Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010 (2020).
Google Scholar
Langer, S., Marshall, L. J., Day, A. J. & Morgan, M. R. Flavanols and methylxanthines in commercially available dark chocolate: A study of the correlation with nonfat cocoa solids. J. Agric. Food Chem. 59, 8435–8441. https://doi.org/10.1021/jf201398t (2011).
Google Scholar
Meng, C. C., Jalil, A. M. & Ismail, A. Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market. Molecules 14, 200–209. https://doi.org/10.3390/molecules14010200 (2009).
Google Scholar
Kerimi, A. & Williamson, G. The cardiovascular benefits of dark chocolate. Vasc. Pharmacol. 71, 11–15. https://doi.org/10.1016/j.vph.2015.05.011 (2015).
Google Scholar
West, S. G. et al. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults. Br. J. Nutr. 111, 653–661. https://doi.org/10.1017/S0007114513002912 (2014).
Google Scholar
Flammer, A. J. et al. Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation 116, 2376–2382. https://doi.org/10.1161/CIRCULATIONAHA.107.713867 (2007).
Google Scholar
Innes, A. J., Kennedy, G., McLaren, M., Bancroft, A. J. & Belch, J. J. F. Dark chocolate inhibits platelet aggregation in healthy volunteers. Platelets 14, 325–327. https://doi.org/10.1080/0953710031000123681 (2003).
Google Scholar
Tokede, O. A., Gaziano, J. M. & Djousse, L. Effects of cocoa products/dark chocolate on serum lipids: A meta-analysis. Eur. J. Clin. Nutr. 65, 879–886. https://doi.org/10.1038/ejcn.2011.64 (2011).
Google Scholar
Grassi, D., Lippi, C., Necozione, S., Desideri, G. & Ferri, C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am. J. Clin. Nutr. 81, 611–614 (2005).
Google Scholar
Grassi, D. et al. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J. Nutr. 138, 1671–1676. https://doi.org/10.1093/jn/138.9.1671 (2008).
Google Scholar
Ried, K., Frank, O. R. & Stocks, N. P. Dark chocolate or tomato extract for prehypertension: A randomised controlled trial. BMC Complement. Altern. Med. https://doi.org/10.1186/1472-6882-9-22 (2009).
Google Scholar
Engler, M. B. et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 23, 197–204. https://doi.org/10.1080/07315724.2004.10719361 (2004).
Google Scholar
Richmond, R. C. & Davey Smith, G. Mendelian randomization: Concepts and scope. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a040501 (2022).
Google Scholar
Zheng, J. et al. Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep. 4, 330–345. https://doi.org/10.1007/s40471-017-0128-6 (2017).
Google Scholar
Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. JAMA-J. Am. Med. Assoc. 318, 1925–1926. https://doi.org/10.1001/jama.2017.17219 (2017).
Google Scholar
Hu, M. J., Tan, J. S., Gao, X. J., Yang, J. G. & Yang, Y. J. Effect of cheese intake on cardiovascular diseases and cardiovascular biomarkers. Nutrients https://doi.org/10.3390/nu14142936 (2022).
Google Scholar
Zhang, Z., Wang, M., Yuan, S. & Liu, X. Coffee consumption and risk of coronary artery disease. Eur. J. Prev. Cardiol. 29, e29–e31. https://doi.org/10.1093/eurjpc/zwaa130 (2022).
Google Scholar
Mitchell, R., Elsworth, B.L., Mitchell, R., Raistrick, C.A., Paternoster, L., Hemani, G. & Gaunt, T.R. MRC IEU UK Biobank GWAS Pipeline Version 2. https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi (2019).
Panagiotou, O. A., Ioannidis, J. P. A., Genome-Wide Significance, P. What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int. J. Epidemiol. 41, 273–286. https://doi.org/10.1093/ije/dyr178 (2012).
Google Scholar
Zhang, Y., Liu, Z., Choudhury, T., Cornelis, M. C. & Liu, W. Habitual coffee intake and risk for nonalcoholic fatty liver disease: A two-sample Mendelian randomization study. Eur. J. Nutr. 60, 1761–1767. https://doi.org/10.1007/s00394-020-02369-z (2021).
Google Scholar
Papadimitriou, N. et al. Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat. Commun. 11, 597. https://doi.org/10.1038/s41467-020-14389-8 (2020).
Google Scholar
Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752. https://doi.org/10.1093/ije/dyq151 (2011).
Google Scholar
Butt, S. A. et al. Cardiovascular manifestations of systemic sclerosis: A Danish nationwide cohort study. J. Am. Heart Assoc. 8, e013405. https://doi.org/10.1161/JAHA.119.013405 (2019).
Google Scholar
Ngian, G. S. et al. Prevalence of coronary heart disease and cardiovascular risk factors in a national cross-sectional cohort study of systemic sclerosis. Ann. Rheum. Dis. 71, 1980–1983. https://doi.org/10.1136/annrheumdis-2011-201176 (2012).
Google Scholar
Man, A. et al. The risk of cardiovascular disease in systemic sclerosis: A population-based cohort study. Ann. Rheum. Dis. 72, 1188–1193. https://doi.org/10.1136/annrheumdis-2012-202007 (2013).
Google Scholar
Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes 59, 3229–3239. https://doi.org/10.2337/db10-0502 (2010).
Google Scholar
Scaramuzza, A. E. & Zuccotti, G. V. Dark chocolate consumption and lower HbA1c in children with diabetes: Direct cause or pure happiness?. Clin. Nutr. 34, 333–334. https://doi.org/10.1016/j.clnu.2015.01.007 (2015).
Google Scholar
Orsi, F. A. et al. Glucocorticoid use and risk of first and recurrent venous thromboembolism: Self-controlled case-series and cohort study. Br. J. Haematol. 193, 1194–1202. https://doi.org/10.1111/bjh.17388 (2021).
Google Scholar
Johannesdottir, S. A. et al. Use of glucocorticoids and risk of venous thromboembolism: A nationwide population-based case–control study. JAMA Intern. Med. 173, 743–752. https://doi.org/10.1001/jamainternmed.2013.122 (2013).
Google Scholar
Horton, D. B. et al. Oral glucocorticoids and incident treatment of diabetes mellitus, hypertension, and venous thromboembolism in children. Am. J. Epidemiol. 190, 403–412. https://doi.org/10.1093/aje/kwaa197 (2021).
Google Scholar
Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 54, 1803–1815. https://doi.org/10.1038/s41588-022-01233-6 (2022).
Google Scholar
Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet. 50, 1234–1239. https://doi.org/10.1038/s41588-018-0171-3 (2018).
Google Scholar
Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163. https://doi.org/10.1038/s41467-019-13690-5 (2020).
Google Scholar
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537. https://doi.org/10.1038/s41588-018-0058-3 (2018).
Google Scholar
The FinnGen consortium. The R9 Release of FinnGen Study. https://r9.finngen.fi/. Accessed 26 Aug 2023.
Thompson, J. R., Minelli, C. & Del Greco, M. F. Mendelian randomization using public data from genetic consortia. Int. J. Biostat. https://doi.org/10.1515/ijb-2015-0074 (2016).
Google Scholar
Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802. https://doi.org/10.1002/sim.7221 (2017).
Google Scholar
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30–42. https://doi.org/10.1097/ede.0000000000000559 (2017).
Google Scholar
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525. https://doi.org/10.1093/ije/dyv080 (2015).
Google Scholar
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314. https://doi.org/10.1002/gepi.21965 (2016).
Google Scholar
Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 42, 1497–1501. https://doi.org/10.1093/ije/dyt179 (2013).
Google Scholar
Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698. https://doi.org/10.1038/s41588-018-0099-7 (2018).
Google Scholar
Ong, J. S. & MacGregor, S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner’s perspective. Genet. Epidemiol. 43, 609–616. https://doi.org/10.1002/gepi.22207 (2019).
Google Scholar
Magrone, T., Russo, M. A. & Jirillo, E. Cocoa and dark chocolate polyphenols: From biology to clinical applications. Front. Immunol. 8, 677. https://doi.org/10.3389/fimmu.2017.00677 (2017).
Google Scholar
Faridi, Z., Njike, V. Y., Dutta, S., Ali, A. & Katz, D. L. Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. Am. J. Clin. Nutr. 88, 58–63. https://doi.org/10.1093/ajcn/88.1.58 (2008).
Google Scholar
Ribeiro, D. et al. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 38, 858–870. https://doi.org/10.1007/s10753-014-9995-x (2015).
Google Scholar
Selmi, C., Cocchi, C. A., Lanfredini, M., Keen, C. L. & Gershwin, M. E. Chocolate at heart: The anti-inflammatory impact of cocoa flavanols. Mol. Nutr. Food Res. 52, 1340–1348. https://doi.org/10.1002/mnfr.200700435 (2008).
Google Scholar
Ferrucci, L. & Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522. https://doi.org/10.1038/s41569-018-0064-2 (2018).
Google Scholar
Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83, 456S-460S (2006).
Google Scholar
Shrime, M. G. et al. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J. Nutr. 141, 1982–1988. https://doi.org/10.3945/jn.111.145482 (2011).
Google Scholar
Egan, B. M., Laken, M. A., Donovan, J. L. & Woolson, R. F. Does dark chocolate have a role in the prevention and management of hypertension?: Commentary on the evidence. Hypertension 55, 1289–1295. https://doi.org/10.1161/HYPERTENSIONAHA.110.151522 (2010).
Google Scholar
Amoah, I. et al. Effect of cocoa beverage and dark chocolate consumption on blood pressure in those with normal and elevated blood pressure: A systematic review and meta-analysis. Foods https://doi.org/10.3390/foods11131962 (2022).
Al-Safi, S. A., Ayoub, N. M., Al-Doghim, I. & Aboul-Enein, F. H. Dark chocolate and blood pressure: A novel study from Jordan. Curr. Drug Deliv. 8, 595–599 (2011).
Google Scholar
Actis-Goretta, L., Ottaviani, J. I. & Fraga, C. G. Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J. Agric. Food Chem. 54, 229–234. https://doi.org/10.1021/jf052263o (2006).
Google Scholar
Burgess, S., Swanson, S. A. & Labrecque, J. A. Are Mendelian randomization investigations immune from bias due to reverse causation?. Eur. J. Epidemiol. 36, 253–257. https://doi.org/10.1007/s10654-021-00726-8 (2021).
Google Scholar
Oparil, S. et al. Hypertension. Nat. Rev. Dis. Primers 4, 18014. https://doi.org/10.1038/nrdp.2018.14 (2018).
Google Scholar
Minelli, C. et al. The use of two-sample methods for Mendelian randomization analyses on single large datasets. Int. J. Epidemiol. 50, 1651–1659. https://doi.org/10.1093/ije/dyab084 (2021).
Google Scholar