Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).
Google Scholar
Behre, K. Die Algenbesiedlung Einiger Seen Um Bremen Und Bremerhaven (Institut für Meeresforschung, 1956).
Lund, J. W. G. The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kütz. subsp. subarctica O. Miill. J. Ecol. 42, 151–179 (1954).
Google Scholar
Lund, J. W. G. Further observations on the seasonal cycle of Melosira italic (Ehr.) Kiitz. subsp. subarctica O. Miill. J. Ecol. 43, 90–102 (1955).
Google Scholar
Moss, B. & Karim, A. G. A. Phytoplankton associations in two pools and their relationships with associated benthic flora. Hydrobiologia 33, 587–600 (1969).
Google Scholar
Krasznai, E. et al. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639, 173–184 (2010).
Google Scholar
Scheffer, M. Ecology of Shallow Lakes (Springer Netherlands, 2004).
Google Scholar
De Tezanos, P. P. & O’Farrell, I. Regime shifts between free-floating plants and phytoplankton: A review. Hydrobiologia 740, 13–24 (2014).
Google Scholar
Hasler, A. D. & Jones, E. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30, 359–364 (1949).
Google Scholar
Koleszár, G. et al. The role of epiphytic algae and grazing snails in stable states of submerged and of free-floating plants. Ecosystems 25, 1371–1383 (2022).
Google Scholar
Choi, J.-Y. et al. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecol. Inform. 24, 177–185 (2014).
Google Scholar
Jeppesen, E. et al. Top-down control in freshwater lakes: The role of nutrient state, submerged macrophytes and water depth. In Shallow Lakes ’95: Trophic Cascades in Shallow Freshwater and Brackish Lakes (eds Kufel, L. et al.) 151–164 (Springer Netherlands, 1997).
Google Scholar
Timms, R. M. & Moss, B. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29, 472–486 (1984).
Google Scholar
Hilt, S. Allelopathic inhibition of epiphytes by submerged macrophytes. Aquat. Bot. 85, 252–256 (2006).
Google Scholar
Hilt, S. & Gross, E. M. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes?. Basic Appl. Ecol. 9, 422–432 (2008).
Google Scholar
Hootsmans, M. J. M. & Blindow, I. Allelopathic limitation of algal growth by macrophytes. In Lake Veluwe, a Macrophyte-Dominated System Under Eutrophication Stress (eds Van Vierssen, W. et al.) 175–192 (Springer Netherlands, 1994).
Google Scholar
Körner, S. & Nicklisch, A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38, 862–871 (2002).
Google Scholar
Dong, J., Chang, M., Li, C., Dai, D. & Gao, Y. Allelopathic effects and potential active substances of Ceratophyllum demersum L. on Chlorella vulgaris Beij. Aquat. Ecol. 53, 651–663 (2019).
Google Scholar
Pakdel, F. M., Sim, L., Beardall, J. & Davis, J. Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquat. Bot. 110, 24–30 (2013).
Google Scholar
Gross, E. M., Erhard, D. & Iványi, E. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia 506, 583–589 (2003).
Google Scholar
Brunberg, A.-K. & Blomqvist, P. Recruitment of microcystis (cyanophyceae) from lake sediments: The importance of littoral inocula. J. Phycol. 39, 58–63 (2003).
Google Scholar
Head, R. M., Jones, R. I. & Bailey-Watts, A. E. Akinete germination and recruitment of planktonic cyanobacteria from lake sediments. SIL Proc. 26, 1711–1715 (1998).
Naselli-Flores, L. & Barone, R. Phytoplankton dynamics in permanent and temporary Mediterranean waters: Is the game hard to play because of hydrological disturbance? In Phytoplankton Responses to Human Impacts at Different Scales (eds Salmaso, N. et al.) 147–159 (Springer Netherlands, 2012).
Google Scholar
Görgényi, J. et al. Contribution of phytoplankton functional groups to the diversity of a eutrophic oxbow lake. Hydrobiologia 830, 287–301 (2019).
Google Scholar
Lukács, Á. et al. Metaphyton contributes to open water phytoplankton diversity. Hydrobiologia https://doi.org/10.1007/s10750-023-05314-3 (2023).
Google Scholar
Wallace, R. L. Substrate selection by larvae of the sessile rotifer Ptygura beauchampi. Ecology 59, 221–227 (1978).
Google Scholar
Dos Santos, T. R., Ferragut, C. & De Mattos Bicudo, C. E. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hydrobiologia 714, 71–83 (2013).
Google Scholar
Borics, G. et al. A two-dimensional morphospace for cyanobacteria and microalgae: Morphological diversity, evolutionary relatedness, and size constraints. Freshw. Biol. 68, 115–126 (2023).
Google Scholar
Bosserman, R. W. Elemental composition of utricularia-periphyton ecosystems from Okefenokee swamp. Ecology 64, 1637–1645 (1983).
Google Scholar
Krasznai, E. et al. Use of desmids to assess the natural conservation value of a Hungarian oxbow (Malom-Tisza, NE-Hungary). Biologia 63, 928–935 (2008).
Google Scholar
Díaz-Olarte, J. et al. Periphyton and phytoplankton associated with the tropical carnivorous plant Utricularia foliosa. Aquat. Bot. 87, 285–291 (2007).
Google Scholar
Euro+Med: Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. https://www.europlusmed.org/cdm_dataportal/taxon/30C13673-5643-4223-A197-B48EBB512F3D. Accessed 6 June 2023 (2006).
OBM—Magyarország edényes növényfajainak online adatbázisa. https://floraatlasz.uni-sopron.hu/index.php?map&fbclid=IwAR2N4ymzi3Ww_Ve_lRnfRETrZCLqX3EM1AXhE4ez30Zzd1UkW4DUYMYTLs4. Accessed 6 June 2023 (2018).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Google Scholar
Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 tabelle und 15 abbildungen im text und auf 1 tafel. Int. Ver. Für Theor. Und Angew. Limnol. 9, 1–38 (1958).
Borics, G. et al. Biovolume and surface area calculations for microalgae, using realistic 3D models. Sci. Total Environ. 773, 145538 (2021).
Google Scholar
Guiry MD, Guiry GM. AlgaeBase. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway https://www.algaebase.org. Accessed 27 March 2023 (2024).
Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).
Google Scholar
Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).
Google Scholar
Borics, G. et al. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Arch. Hydrobiol. 161, 465–486 (2007).
Lerf, V. et al. Measures of morphological complexity of microalgae and their linkage with organism size. Hydrobiologia https://doi.org/10.1007/s10750-023-05338-9 (2023).
Google Scholar
Jorstad, A. et al. NeuroMorph: A toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks. Neuroinformatics 13, 83–92 (2015).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 29 March 2023 (2023).
Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).
Google Scholar
Görgényi, J. et al. Rarity of microalgae in macro, meso, and microhabitats. Inland Waters 13, 231–246 (2023).
Google Scholar
Reynolds, C. S. The Ecology of Phytoplankton (Cambridge University Press, 2006).
Google Scholar
Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11, e03184 (2020).
Google Scholar
Pacini, A., Mazzoleni, S., Battisti, C. & Ricotta, C. More rich means more diverse: Extending the ‘environmental heterogeneity hypothesis’ to taxonomic diversity. Ecol. Indic. 9, 1271–1274 (2009).
Google Scholar
Ács, É., Kiss, K. T., Szabó-Taylor, K. & Makk, J. Short-term colonization sequence of periphyton on glass slides in a large river (River Danube, near Budapest). Acta Bot. Croat. 100, 135–156 (2000).
Béres, V. et al. Combined eco-morphological functional groups are reliable indicators of colonisation processes of benthic diatom assemblages in a lowland stream. Ecol. Indic. 64, 31–38 (2016).
Google Scholar
Lukács, Á. et al. Colonisation processes in benthic algal communities are well reflected by functional groups. Hydrobiologia 823, 1–15 (2018).
Google Scholar
Dos, S. T. R., Ferragut, C. & De, B. C. E. M. Relationship among carnivorous macrophyte Utricularia foliosa L. and species composition and life forms of periphytic algae community. Acta Limnol. Bras. 30, e208 (2018).
Kurashov, E., Krylova, J. & Protopopova, E. The use of allelochemicals of aquatic macrophytes to suppress the development of cyanobacterial “blooms.” In Plankton Communities (eds Pereira, L. & Gonçalves, A. M.) (IntechOpen, 2021).
Płachno, B. J., Łukaszek, M., Wołowski, K., Adamec, L. & Stolarczyk, P. Aging of Utricularia traps and variability of microorganisms associated with that microhabitat. Aquat. Bot. 97, 44–48 (2012).
Google Scholar
Padisák, J., Soroczki-Pintér, É. & Rezner, Z. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—An experimental study. Hydrobiologia 500, 243–257 (2003).
Google Scholar
Dibble, E. D. & Thomaz, S. M. Use of fractal dimension to assess habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. J. Freshw. Ecol. 24, 93–102 (2009).
Google Scholar
Do Nascimento Filho, S. L., Gama, W. A. & Do Nascimento Moura, A. Effect of the structural complexity of aquatic macrophytes on epiphytic algal, macroinvertebrates, and their interspecific relationships. Aquat. Sci. 83, 57 (2021).
Google Scholar
Knowlton, N. et al. Coral reef biodiversity. In Life in the World’s Oceans (ed. McIntyre, A. D.) 65–78 (John Wiley and Sons Ltd, 2010).
Google Scholar
Toledo, M.-I. et al. Ecological succession of benthic organisms on niche-type artificial reefs. Ecol. Process. 9, 38 (2020).
Google Scholar
Garg A. Disentangling the relative effects of structural complexity and substrate composition on fish habitat selection in coral reef environments. ERA https://era.library.ualberta.ca/items/22d8e682-9d00-45e1-9553-7aaa390f3bc6https://doi.org/10.7939/r3-1qrv-p223. Accessed 5 June 2024 (2021).
Higgins, E., Metaxas, A. & Scheibling, R. E. A systematic review of artificial reefs as platforms for coral reef research and conservation. PLoS One 17, e0261964 (2022).
Google Scholar
Sweet, M. J., Croquer, A. & Bythell, J. C. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals. PLoS One 6, e21195 (2011).
Google Scholar
Reaka-Kudla, M. L. The global biodiversity of coral reefs: A comparison with rainforests. In Biodiversity II: Understanding and Protecting our Biological Resources 551 (Joseph Henry Press, 1997).
Spalding, M., Ravilious, C. & Green, E. P. World Atlas of Coral Reefs (University of California Press, 2001).