Close Menu
  • Home
  • Diabetes
  • Fitness
  • Heart Disease
  • Mental
  • Physical
  • Wellness
  • Yoga
  • Health

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

The percentage of young adults receiving mental health treatment increased by 45% from 2019 to 2022, the largest increase of any age group.

August 1, 2024

Desert Healthcare, Tenet to renew non-compete clause again, vote next week

August 1, 2024

Personalized health coaching may improve cognitive function and reduce dementia risk in older adults

August 1, 2024
Facebook X (Twitter) Instagram
Health Medic NewsHealth Medic News
  • Home
  • About
  • Advertise
  • Contact us
  • DMCA Notice
  • Privacy Policy
  • Terms of Use
  • Home
  • Diabetes

    Analysis of Tandem Diabetes Care (NASDAQ:TNDM) and SeaStar Medical (NASDAQ:ICU)

    June 19, 2024

    Diabetes costs in the UK could reach £14 billion, study finds

    June 19, 2024

    Oral semaglutide proves effective for type 2 diabetes and weight loss in Dutch study

    June 18, 2024

    Novo Nordisk considers adding 1,000 jobs in Johnston County as sales of weight-loss drug surge

    June 18, 2024

    Cost of devastating complications highlights need for urgent reform of diabetes care in the UK

    June 18, 2024
  • Fitness

    “National Fitness Day” is the next Apple Watch challenge to be held in China

    July 30, 2024

    The Pininfarina Sintesi is now my favorite fitness tracker, but there’s one thing I’d change.

    July 30, 2024

    Fitness Corner: Exercise and our own mortality

    July 30, 2024

    Fitness World Canada Hosts First Spartan DEKA Event in Surrey

    July 30, 2024

    New Franklin Regional boys soccer coach focuses on building trust, fitness

    July 30, 2024
  • Heart Disease

    Blood test warns of hidden heart disease risk

    July 30, 2024

    Loss of teeth may be a sign of serious heart disease

    July 30, 2024

    Researchers warn that removing race from the heart disease risk equation could lead to 16 million people not taking their medications

    July 29, 2024

    Study identifies 18 proteins associated with heart failure and frailty

    July 29, 2024

    Combined prostate cancer treatment increases risk of heart disease

    July 29, 2024
  • Mental

    Addressing adolescent mental health – the importance of early intervention and support

    June 18, 2024

    MAFS’ Dom updates fans on mental health and the future of his podcast

    June 18, 2024

    Connecting to mental health services is as easy as picking up the phone

    June 18, 2024

    Oklahoma Governor Stitt Opposes Mental Health Consent Decree

    June 18, 2024

    Hand to Hold provides mental health support to families in Texas Children’s Hospital’s NICU

    June 17, 2024
  • Physical

    One-of-a-kind Wu-Tang Clan album to be screened at Australian museum

    June 16, 2024

    Interview: Annie Weisman and Closing the Final Chapter of ‘Physical’

    June 16, 2024

    Physiotherapy helps counter the effects of chemotherapy | News, Sports, Jobs

    June 16, 2024

    Barcelona’s new manager not obsessed with physical development

    June 16, 2024

    YouTuber ImAllexx comes under fire for allegations of physical abuse against ex-girlfriend

    June 15, 2024
  • Wellness

    Top Medical Tourism Destinations: A Global Overview | Corporate Wellness

    March 29, 2024

    OACEUS brings a new way to wellness

    March 29, 2024

    Spotlight on the best countries for medical tourism in 2024 | Corporate Wellness

    March 29, 2024

    Digging Deeper into Medical Tourism: Origins and Operations | Corporate Wellness

    March 29, 2024

    Identifying leading medical tourism organizations around the world | Corporate Wellness

    March 29, 2024
  • Yoga

    Body and mind: Epilepsy patients may benefit from yoga

    July 5, 2024

    Lenovo Yoga Pro 9i 16 (2024) review: A+ multi-threading

    July 5, 2024

    The Lenovo Yoga Slim 7x might be the best deal among the new Snapdragon AI PCs

    July 5, 2024

    A Minute with Stavri Ioannou, Yoga Teacher, Mindfulness Educator, and Founder of Kids Alternativities

    July 5, 2024

    7 Places to Work Out Outdoors on the East End This Summer

    July 5, 2024
  • Health

    The percentage of young adults receiving mental health treatment increased by 45% from 2019 to 2022, the largest increase of any age group.

    August 1, 2024

    Desert Healthcare, Tenet to renew non-compete clause again, vote next week

    August 1, 2024

    Personalized health coaching may improve cognitive function and reduce dementia risk in older adults

    August 1, 2024

    Troy University’s College of Health and Human Services to change name effective August 1

    July 30, 2024

    Community Health Systems Announces Definitive Agreement to Sell Three Pennsylvania Hospitals to WoodBridge Healthcare Inc.

    July 30, 2024
Health Medic NewsHealth Medic News
Home » RNA modification in cardiovascular disease: implications for therapeutic interventions
Heart Disease

RNA modification in cardiovascular disease: implications for therapeutic interventions

perbinderBy perbinderOctober 27, 2023No Comments51 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Reddit WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email


  • Deng, S. et al. RNA m(6)A regulates transcription via DNA demethylation and chromatin accessibility. Nat. Genet. 54, 1427–1437 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Takahashi, M. et al. The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING-IFN-β pathway. Nat. Immunol. 22, 485–496 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    PubMed 

    Google Scholar 

  • Yoon, K. J. et al. Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell 171, 877–889.e817 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guzzi, N. et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204–1216.e1226 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Rapino, F. et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605–609 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. tRNA-m(1)A modification promotes T cell expansion via efficient MYC protein synthesis. Nat. Immunol. 23, 1433–1444 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delaunay, S. et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature 607, 593–603 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Targeting tumour-intrinsic N(7)-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy. Gut 72, 1555–1567 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Jones, P. A., Issa, J.-P. J. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bartee, D., Thalalla Gamage, S., Link, C. N. & Meier, J. L. Arrow pushing in RNA modification sequencing. Chem. Soc. Rev. 50, 9482–9502 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wiener, D. & Schwartz, S. The epitranscriptome beyond m(6)A. Nat. Rev. Genet. 22, 119–131 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–d307 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alarcón, C. R. et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    PubMed 

    Google Scholar 

  • Chen, X. et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. et al. 5-methylcytosine promotes mRNA export – NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 27, 606–625 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell 75, 1188–1202.e1111 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Dnmt2 mediates intergenerational transmission of paternally acquired m etabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 20, 535–540 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominissini, D. et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc. Natl. Acad. Sci. USA 119, e2119038119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Z. et al. The LINC00623/NAT10 signaling axis promotes pancreatic cancer progress ion by remodeling ac4C modification of mRNA. J. Hematol. Oncol. J. Hematol Oncol 15, 112 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohira, T. et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature 605, 372–379 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Van Haute, L. et al. NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs. Nucleic Acids Res. 47, 8720–8733 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morscher, R. J. et al. Mitochondrial translation requires folate-dependent tRNA methylation. Nature 554, 128–132 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Sharma, S. & Lafontaine, D. L. J. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci. 40, 560–575 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. T. et al. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ. 29, 627–641 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. X. et al. WTAP-mediated m(6)A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ. 29, 1137–1151 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, R. X. et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun. 10, 4695 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. X. et al. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol. Cell 59, 50–61 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Jones, M. R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat. Cell Biol. 11, 1157–1163 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, J. et al. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 16, 139 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, T. T. et al. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 6, 784–801 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Tsai, M.-C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, C. M., Gershowitz, A. & Moss, B. Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell 4, 379–386 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Furuichi, Y. et al. Methylated, blocked 5 termini in HeLa cell mRNA. Proc. Natl. Acad. Sci. USA 72, 1904–1908 (1975).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20, 608–624 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G. & Rottman, F. M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3, 1233–1247 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P., Doxtader, K. A. & Nam, Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63, 306–317 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534, 575–578 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Warda, A. S. et al. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18, 2004–2014 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yue, Y. et al. VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4, 10 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Patil, D. P. et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Harper, J. E., Miceli, S. M., Roberts, R. J. & Manley, J. L. Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res. 18, 5735–5741 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csepany, T., Lin, A., Baldick, C. J. Jr. & Beemon, K. Sequence specificity of mRNA N6-adenosine methyltransferase. J. Biol. Chem. 265, 20117–20122 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Bokar, J. A., Rath-Shambaugh, M. E., Ludwiczak, R., Narayan, P. & Rottman, F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269, 17697–17704 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, X. et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24, 1403–1419 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartosovic, M. et al. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3’-end processing. Nucleic Acids Res. 45, 11356–11370 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, W. et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Li, S. et al. Nuclear Aurora kinase A switches m(6)A reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4. Signal Transduct. Target. Ther. 7, 97 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L. et al. Nuclear m(6) A reader YTHDC1 suppresses proximal alternative polyadenylation sites by interfering with the 3’ processing machinery. EMBO Rep. 23, e54686 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasowitz, S. D. et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14, e1007412 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, S. et al. RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m(6)A-dependent manner. Cell Death Dis. 13, 73 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alarcón, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun. 10, 1858 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J. Z. et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology 65, 529–543 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin. Transl. Med. 11, e545 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol. Cell 76, 70–81.e79 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pendleton, K. E. et al. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell 169, 824–835.e814 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aoyama, T., Yamashita, S. & Tomita, K. Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Nucleic Acids Res. 48, 5157–5168 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, C. et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells. Proc. Natl. Acad. Sci. USA 115, E325–e333 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wei, G. et al. Acute depletion of METTL3 implicates N (6)-methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Res. 31, 1395–1408 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife 6, e31311 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. m(6)A modification of circSPECC1 suppresses RPE oxidative damage and maintains retinal homeostasis. Cell Rep. 41, 111671 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Edens, B. M. et al. FMRP modulates neural differentiation through m(6)A-dependent mRNA nuclear export. Cell Rep 28, 845–854.e845 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batista, P. J. et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev 29, 2037–2053 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slobodin, B. et al. Transcription dynamics regulate poly(A) tails and expression of the RNA degradation machinery to balance mRNA levels. Mol. Cell 78, 434–444.e435 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Du, H. et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. The N6-methyladenosine modification enhances ferroptosis resistance through inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma. Clin. Transl. Med. 12, e778 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, G. et al. Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay. Nat. Commun. 13, 859 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, F. et al. N(6)-methyladenosine modulates nonsense-mediated mRNA Decay in human glioblastoma. Cancer Res. 79, 5785–5798 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Y. et al. N(6)-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 39, 958–972.e958 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wojtas, M. N. et al. Regulation of m(6)A transcripts by the 3’→5’ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68, 374–387.e312 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jin, D. et al. m(6)A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol. Cancer 19, 40 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20, 2262–2276 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, H. et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 181, 1582–1595.e1518 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lasman, L. et al. Context-dependent functional compensation between Ythdf m(6)A reader proteins. Genes Dev. 34, 1373–1391 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, T. L. et al. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep. 22, e50128 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif 55, e13157 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ni, W. et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol. Cancer 18, 143 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. et al. A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J. Exp. Clin. Cancer Res. 41, 69 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum. Mol. Genet. 27, 3936–3950 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. et al. LncRNA LINC00942 promotes chemoresistance in gastric cancer by suppressing MSI2 degradation to enhance c-Myc mRNA stability. Clin. Transl. Med. 12, e703 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, H. et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, S. et al. An oncopeptide regulates m(6)A recognition by the m(6)A reader IGF2BP1 and tumorigenesis. Nat. Commun. 11, 1685 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bechara, R. et al. The m(6)A reader IMP2 directs autoimmune inflammation through an IL-17- and TNFα-dependent C/EBP transcription factor axis. Sci. Immunol. 6, eabd1287 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, S. et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 47, 375–390 (2019).

    PubMed 

    Google Scholar 

  • Müller, S. et al. The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer. Nucleic Acids Res. 48, 8576–8590 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 15, 52 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, L. et al. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m(6)A-mediated degradation of STEAP3 mRNA. Mol. Cancer 21, 168 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Z. et al. rtcisE2F promotes the self-renewal and metastasis of liver tumor-initiating cells via N(6)-methyladenosine-dependent E2F3/E2F6 mRNA stability. Sci. China Life Sci. 65, 1840–1854 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, H. et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J. Adv. Res. 37, 91–106 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, P. et al. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene 40, 1609–1627 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. Hsa_circ_0004287 inhibits macrophage-mediated inflammation in an N(6)-methyladenosine-dependent manner in atopic dermatitis and psoriasis. J. Allergy Clin. Immunol. 149, 2021–2033 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol. Cancer 18, 127 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yue, B. et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol. Cancer 18, 142 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lan, T. et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol. Cancer 18, 186 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. The m(6)A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway. Mol. Cancer 21, 174 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edupuganti, R. R. et al. N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leppek, K., Das, R. & Barna, M. Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Ishigaki, Y., Li, X., Serin, G. & Maquat, L. E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62, 335–345 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choe, J. et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, R. et al. METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. Nat. Cell Biol. 24, 205–216 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, F. et al. METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic eIF4E2. Cell Rep. 42, 112150 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, X. et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat. Commun. 10, 2065 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mao, Y. et al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat. Commun. 10, 5332 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, A. et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 27, 444–447 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coots, R. A. et al. m(6)A facilitates eIF4F-independent mRNA translation. Mol. Cell 68, 504–514.e507 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27, 626–641 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer, K. D. et al. 5’ UTR m(6)A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, H. et al. N(6-)Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Pinto, R. et al. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Res. 48, 830–846 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ignatova, V. V. et al. The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 34, 715–729 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rong, B. et al. Ribosome 18S m(6)A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth. Cell Rep. 33, 108544 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Choi, J. et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grozhik, A. V. et al. Antibody cross-reactivity accounts for widespread appearance of m(1)A in 5’UTRs. Nat. Commun. 10, 5126 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bar-Yaacov, D. et al. Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. PLoS Biol. 14, e1002557 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chujo, T. & Suzuki, T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA 18, 2269–2276 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vilardo, E. et al. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 40, 11583–11593 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Base-resolution mapping reveals distinct m(1)A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005.e1009 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safra, M. et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551, 251–255 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Woo, H. H. & Chambers, S. K. Human ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 35–46 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kuang, W. et al. ALKBH3-dependent m(1)A demethylation of Aurora A mRNA inhibits ciliogenesis. Cell Discov. 8, 25 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Z. et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 47, 2533–2545 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 816–828.e816 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. S. et al. ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nat. Cell Biol. 23, 684–691 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, J. et al. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e975 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, G. et al. Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance. Mol. Ther. Nucleic Acids 26, 575–593 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, T., Chen, W., Liu, J., Gu, N. & Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Van Haute, L. et al. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat. Commun 7, 12039 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R. J., Long, T., Li, J., Li, H. & Wang, E. D. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res. 45, 6684–6697 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Z. X. et al. Position 34 of tRNA is a discriminative element for m5C38 modification by human DNMT2. Nucleic Acids Res. 49, 13045–13061 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janin, M. et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 138, 1053–1074 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, H. et al. Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res. 50, 10695–10716 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun. Biol. 5, 495 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spåhr, H., Habermann, B., Gustafsson, C. M., Larsson, N. G. & Hallberg, B. M. Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proc. Natl. Acad. Sci. USA 109, 15253–15258 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, X. et al. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal. Chem. 92, 1346–1354 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Arguello, A. E. et al. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat. Commun. 13, 4176 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, W. et al. Formation and determination of the oxidation products of 5-methylcytosine in RNA. Chem. Sci. 7, 5495–5502 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, L. et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 136, 11582–11585 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, C. et al. ALYREF mediates RNA m(5)C modification to promote hepatocellular carcinoma progression. Signal Transduct. Target. Ther. 8, 130 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, Q. et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554, 123–127 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, W. L. et al. Nsun2 coupling with RoRγt shapes the fate of Th17 cells and promotes colitis. Nat. Commun. 14, 863 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muthukrishnan, S., Both, G. W., Furuichi, Y. & Shatkin, A. J. 5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 255, 33–37 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Adams, J. M. & Cory, S. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255, 28–33 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Aregger, M. et al. CDK1-cyclin B1 activates RNMT, coordinating mRNA cap methylation with G1 phase transcription. Mol. Cell 61, 734–746 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Létoquart, J. et al. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Proc. Natl. Acad. Sci. USA 111, E5518–E5526 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandolfini, L. et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol. Cell 74, 1278–1290.e1279 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, Z. et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol. Cell 81, 3339–3355.e3338 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. S. et al. Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol. Cell 74, 1304–1316.e1308 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furuichi, Y., LaFiandra, A. & Shatkin, A. J. 5’-Terminal structure and mRNA stability. Nature 266, 235–239 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • Konarska, M. M., Padgett, R. A. & Sharp, P. A. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38, 731–736 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Hsu, C. L. & Stevens, A. Yeast cells lacking 5’–>3’ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5’ cap structure. Mol. Cell. Biol. 13, 4826–4835 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pabis, M. et al. The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells. RNA 19, 1054–1063 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niedzwiecka, A. et al. Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5’ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J. Mol. Biol. 319, 615–635 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, S. et al. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol. Cell 71, 244–255.e245 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J. et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol. Ther. 29, 3422–3435 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Culjkovic, B., Topisirovic, I., Skrabanek, L., Ruiz-Gutierrez, M. & Borden, K. L. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3’UTR. J. Cell Biol. 169, 245–256 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, M. et al. Mammalian 5’-capped microRNA precursors that generate a single microRNA. Cell 155, 1568–1580 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheng, P. et al. Dicer cleaves 5’-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res. 46, 5737–5752 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dantsuji, S., Ohno, M. & Taniguchi, I. The hnRNP C tetramer binds to CBC on mRNA and impedes PHAX recruitment for the classification of RNA polymerase II transcripts. Nucleic Acids Res. 51, 1393–1408 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ito, S. et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J. Biol. Chem. 289, 35724–35730 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bortolin-Cavaillé, M. L. et al. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res. 50, 6284–6299 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, S. et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 43, 2242–2258 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886.e1824 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638–643 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arango, D. et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol. Cell 82, 2797–2814.e2711 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, X. M. et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene 42, 1101–1116 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, W. et al. ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss. Mol. Ther. Nucleic Acids 26, 135–147 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, G. et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin. Transl. Med. 12, e738 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Z. et al. The LINC00623/NAT10 signaling axis promotes pancreatic cancer progression by remodeling ac4C modification of mRNA. J. Hematol. Oncol. 15, 112 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, X. et al. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun. 42, 1347–1366 (2022).

    Google Scholar 

  • Jin, C. et al. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac(4)C acetylation of KIF23 mRNA. J. Exp. Clin. Cancer Res. 41, 345 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, L. et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res. 33, 355–371 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Nance, K. D. et al. Cytidine acetylation yields a hypoinflammatory synthetic messenger RNA. Cell Chem. Biol. 29, 312–320.e317 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: genome-wide determination of poly(A) tail length and 3’ end modifications. Mol. Cell 53, 1044–1052 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mullen, T. E. & Marzluff, W. F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5’ to 3’ and 3’ to 5’. Genes Dev 22, 50–65 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, M. J., West, S. & Norbury, C. J. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17, 39–44 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, A. et al. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat. Commun. 13, 5260 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi, H. et al. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol. Cell 70, 1081–1088.e1085 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32, 1842–1854 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ustianenko, D. et al. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J. 35, 2179–2191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, L. W. et al. Nuclear poly(A) binding protein 1 (PABPN1) mediates zygotic genome activation-dependent maternal mRNA clearance during mouse early embryonic development. Nucleic Acids Res. 50, 458–472 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Koppers-Lalic, D. et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8, 1649–1658 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. A MicroRNA precursor surveillance system in quality control of MicroRNA synthesis. Mol. Cell 55, 868–879 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ripin, N. et al. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc. Natl. Acad. Sci. USA 116, 2935–2944 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loh, X. Y. et al. RNA-binding protein ZFP36L1 suppresses hypoxia and cell-cycle signaling. Cancer Res. 80, 219–233 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Rataj, F. et al. Targeting AU-rich element-mediated mRNA decay with a truncated active form of the zinc-finger protein TIS11b/BRF1 impairs major hallmarks of mammary tumorigenesis. Oncogene 38, 5174–5190 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gu, L. et al. Reconstitution of HuR-Inhibited CUGBP1 expression protects cardiomyocytes from acute myocardial infarction-induced injury. Antioxid. Redox Signal. 27, 1013–1026 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, C. C. et al. Terminal uridyltransferase 7 regulates TLR4-triggered inflammation by controlling Regnase-1 mRNA uridylation and degradation. Nat. Commun. 12, 3878 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Rau, F. et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat. Struct. Mol. Biol. 18, 840–845 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. et al. A Mechanism for microRNA Arm Switching Regulated by Uridylation. Mol. Cell 78, 1224–1236.e1225 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ansari, M. Y. et al. Genetic inactivation of ZCCHC6 suppresses interleukin-6 expression and reduces the severity of experimental osteoarthritis in mice. Arthritis Rheumatol. 71, 583–593 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e814 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Global RNA editing identification and characterization during human pluripotent-to-cardiomyocyte differentiation. Mol. Ther. Nucleic Acids 26, 879–891 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, F. et al. A comprehensive RNA editome reveals that edited Azin1 partners with DDX1 to enable hematopoietic stem cell differentiation. Blood 138, 1939–1952 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, L. et al. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J. Clin. Invest. 132, e143397 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomon, O. et al. RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat. Commun. 8, 1440 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kokot, K. E. et al. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res. Cardiol. 117, 32 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zipeto, M. A. et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell 19, 177–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X. et al. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol. Ther. 30, 400–414 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Hu, X., Zou, Q., Yao, L. & Yang, X. Survey of the binding preferences of RNA-binding proteins to RNA editing events. Genome Biol. 23, 169 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stellos, K. et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22, 1140–1150 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Shen, H. et al. ADARs act as potent regulators of circular transcriptome in cancer. Nat. Commun. 13, 1508 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, C. C. et al. ADAR1-mediated 3’ UTR editing and expression control of antiapoptosis genes fine-tunes cellular apoptosis response. Cell Death Dis. 8, e2833 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chalk, A. M., Taylor, S., Heraud-Farlow, J. E. & Walkley, C. R. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol. 20, 268 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, T. H. et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut 63, 832–843 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Chan, T. H. et al. ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology 151, 637–650.e610 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • van der Kwast, R. et al. Adenosine-to-inosine editing of vasoactive microRNAs alters their targetome and function in ischemia. Mol. Ther. Nucleic Acids 21, 932–953 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shiromoto, Y., Sakurai, M., Minakuchi, M., Ariyoshi, K. & Nishikura, K. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells. Nat. Commun. 12, 1654 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jimeno, S. et al. ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nat. Commun. 12, 5512 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, Y. et al. RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis. J. Hepatol. 74, 135–147 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Kwast, R. et al. Adenosine-to-inosine editing of microRNA-487b alters target gene selection after ischemia and promotes neovascularization. Circ. Res. 122, 444–456 (2018).

    PubMed 

    Google Scholar 

  • Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcia-Gonzalez, C. et al. ADAR1 prevents autoinflammatory processes in the heart mediated by IRF7. Circ. Res. 131, 580–597 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • de Reuver, R. et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 607, 784–789 (2022).

    PubMed 

    Google Scholar 

  • Karijolich, J., Yi, C. & Yu, Y. T. Transcriptome-wide dynamics of RNA pseudouridylation. Nat. Rev. Mol. Cell Biol. 16, 581–585 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, D. R. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23, 5020–5026 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, B. S. & He, C. Pseudouridine in a new era of RNA modifications. Cell Res. 25, 153–154 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ni, J., Tien, A. L. & Fournier, M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Li, L. & Ye, K. Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443, 302–307 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Ganot, P., Bortolin, M. L. & Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A. & Fischel-Ghodsian, N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am. J. Hum. Genet. 74, 1303–1308 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaheen, R. et al. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum. Genet. 135, 707–713 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, T. Y. et al. Destabilization of mutated human PUS3 protein causes intellectual disability. Hum. Mutat. 43, 2063–2078 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, Q. et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat Cancer 2, 932–949 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guegueniat, J. et al. The human pseudouridine synthase PUS7 recognizes RNA with an extended multi-domain binding surface. Nucleic Acids Res. 49, 11810–11822 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCleverty, C. J., Hornsby, M., Spraggon, G. & Kreusch, A. Crystal structure of human Pus10, a novel pseudouridine synthase. J. Mol. Biol. 373, 1243–1254 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Song, J. et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat. Chem. Biol. 16, 160–169 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Jia, Z. et al. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro. Nucleic Acids Res. 50, 9368–9381 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taoka, M. et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 46, 9289–9298 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mochizuki, Y., He, J., Kulkarni, S., Bessler, M. & Mason, P. J. Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc. Natl. Acad. Sci. USA 101, 10756–10761 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nir, R. et al. A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Res. 50, 4900–4916 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antonicka, H. et al. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 18, 28–38 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Carlile, T. M. et al. mRNA structure determines modification by pseudouridine synthase 1. Nat. Chem. Biol. 15, 966–974 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safra, M., Nir, R., Farouq, D., Vainberg Slutskin, I. & Schwartz, S. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res. 27, 393–406 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levi, O. & Arava, Y. S. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res. 49, 432–443 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Guzzi, N. et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat. Cell Biol. 24, 299–306 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoon, A. et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bellodi, C. et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res. 70, 6026–6035 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMahon, M. et al. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. Elife 8, e48847 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl. Acad. Sci. USA 116, 23068–23074 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, J. et al. Noncanonical registers and base pairs in human 5’ splice-site selection. Nucleic Acids Res. 44, 3908–3921 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, G. et al. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J. 35, 654–667 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645–659.e649 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapino, F. et al. Wobble tRNA modification and hydrophilic amino acid patterns dictate protein fate. Nat. Commun. 12, 2170 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosu, A. et al. Loss of tRNA-modifying enzyme Elp3 activates a p53-dependent antitumor checkpoint in hematopoiesis. J. Exp. Med. 218, e20200662 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Songe-Møller, L. et al. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol. Cell. Biol. 30, 1814–1827 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Delaunay, S. et al. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J. Exp. Med. 213, 2503–2523 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, S. et al. Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat. Commun. 10, 5492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirino, Y. et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc. Natl. Acad. Sci. USA 101, 15070–15075 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kopajtich, R. et al. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am. J. Hum. Genet. 95, 708–720 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, D. et al. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res. 47, 5341–5355 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasarman, F., Antonicka, H., Horvath, R. & Shoubridge, E. A. The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum. Mol. Genet. 20, 4634–4643 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bilbille, Y. et al. The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J. Mol. Biol. 406, 257–274 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Cantara, W. A., Murphy, F. V. T., Demirci, H. & Agris, P. F. Expanded use of sense codons is regulated by modified cytidines in tRNA. Proc. Natl. Acad. Sci. USA 110, 10964–10969 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsao, C. W. et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 147, e93–e621 (2023).

    PubMed 

    Google Scholar 

  • Roth, G. A. et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 70, 1–25 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 18, 785–802 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56 (2019).

    PubMed 

    Google Scholar 

  • Touyz, R. M. et al. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 114, 529–539 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain, M. et al. RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J. 37, e94813 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcadenti, A. et al. Effects of FTO RS9939906 and MC4R RS17782313 on obesity, type 2 diabetes mellitus and blood pressure in patients with hypertension. Cardiovasc. Diabetol. 12, 103 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. HuR (Human Antigen R) regulates the contraction of vascular smooth muscle and maintains blood pressure. Arterioscler. Thromb. Vasc. Biol. 40, 943–957 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Klöss, S., Rodenbach, D., Bordel, R. & Mülsch, A. Human-antigen R (HuR) expression in hypertension: downregulation of the mRNA stabilizing protein HuR in genetic hypertension. Hypertension 45, 1200–1206 (2005).

    PubMed 

    Google Scholar 

  • Chien, C. S. et al. METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc. Natl. Acad. Sci. USA 118, e2025070118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jian, D. et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics 10, 8939–8956 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, Y. et al. Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway. Cell. Mol. Life Sci. 79, 311 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vlachogiannis, N. I. et al. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J. Mol. Cell. Cardiol. 160, 111–120 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Z. et al. Matr3 reshapes m6A modification complex to alleviate macrophage inflammation during atherosclerosis. Clin. Immunol. 245, 109176 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X., Li, X., Jia, H., An, G. & Ni, J. The m(6)A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J. Biol. Chem. 297, 101058 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci 239, 117034 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, T. et al. Factors influencing osteogenic differentiation of human aortic valve interstitial cells. J. Thorac. Cardiovasc. Surg. 161, e163–e185 (2021).

    PubMed 

    Google Scholar 

  • Wang, K. et al. PIWI-interacting RNA HAAPIR regulates cardiomyocyte death after myocardial infarction by promoting NAT10-mediated ac(4) C acetylation of Tfec mRNA. Adv. Sci. 9, e2106058 (2022).

    Google Scholar 

  • Mathiyalagan, P. et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Z. et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11, 3000–3016 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, P. et al. Extracellular vesicle-packaged mitochondrial disturbing miRNA exacerbates cardiac injury during acute myocardial infarction. Clin. Transl. Med. 12, e779 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, H. et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15, 1419–1437 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury. Nat. Commun. 13, 6762 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenna, W. J., Maron, B. J. & Thiene, G. Classification, epidemiology, and global burden of cardiomyopathies. Circ. Res. 121, 722–730 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381, 242–255 (2013).

    PubMed 

    Google Scholar 

  • Schultheiss, H. P. et al. Dilated cardiomyopathy. Nat. Rev. Dis. Primers 5, 32 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muchtar, E., Blauwet, L. A. & Gertz, M. A. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121, 819–837 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ghezzi, D. et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am. J. Hum. Genet. 90, 1079–1087 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perks, K. L. et al. PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Rep 23, 127–142 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Gao, S. et al. Depletion of m(6) A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of Titin. J. Cell. Mol. Med. 25, 10879–10891 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, L. et al. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis. 13, 38 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, T. et al. LncRNA Airn alleviates diabetic cardiac fibrosis by inhibiting activation of cardiac fibroblasts via a m6A-IMP2-p53 axis. Biol. Direct 17, 32 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhuang, S. et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol. (2021).

  • Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Berulava, T. et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail. 22, 54–66 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, B. et al. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct. Target. Ther. 6, 377 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dorn, L. E. et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139, 533–545 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gao, X. Q. et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 22, 1319–1331 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, H. et al. YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci. 11, 132 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    PubMed 

    Google Scholar 

  • Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R. & Grimminger, F. Mechanisms of disease: pulmonary arterial hypertension. Nat. Rev. Cardiol. 8, 443–455 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, L. et al. YTHDF1 regulates pulmonary hypertension through translational control of MAGED1. Am. J. Respir. Crit. Care Med. 203, 1158–1172 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, P. et al. m(6)A modification-mediated GRAP regulates vascular remodeling in hypoxic pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 67, 574–588 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Hu, L. et al. Ythdf2 promotes pulmonary hypertension by suppressing Hmox1-dependent anti-inflammatory and antioxidant function in alveolar macrophages. Redox Biol. 61, 102638 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blackwell, D. J., Schmeckpeper, J. & Knollmann, B. C. Animal models to study cardiac arrhythmias. Circ. Res. 130, 1926–1964 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herring, N., Kalla, M. & Paterson, D. J. The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat. Rev. Cardiol. 16, 707–726 (2019).

    PubMed 

    Google Scholar 

  • Qi, L. et al. m(6)A methyltransferase METTL3 participated in sympathetic neural remodeling post-MI via the TRAF6/NF-κB pathway and ROS production. J. Mol. Cell. Cardiol. 170, 87–99 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Qi, L. et al. New insights into the central sympathetic hyperactivity post-myocardial infarction: Roles of METTL3-mediated m(6) A methylation. J. Cell. Mol. Med. 26, 1264–1280 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. METTL3 boosts glycolysis and cardiac fibroblast proliferation by increasing AR methylation. Int. J. Biol. Macromol. 223, 899–915 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Nienaber, C. A. et al. Aortic dissection. Nat. Rev. Dis. Primers 2, 16053 (2016).

    PubMed 

    Google Scholar 

  • Li, N. et al. Targeting ferroptosis as a novel approach to alleviate aortic dissection. Int. J. Biol. Sci. 18, 4118–4134 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell. Biol. 14, 529–541 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Mutations in RNA methyltransferase gene NSUN5 confer high risk of outflow tract malformation. Front. Cell Dev. Biol. 9, 623394 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore, J. B. T. et al. The A-to-I RNA editing enzyme Adar1 is essential for normal embryonic cardiac growth and development. Circ. Res. 127, 550–552 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Z. et al. ALKBH5-mediated m(6)A mRNA methylation governs human embryonic stem cell cardiac commitment. Mol. Ther. Nucleic Acids 26, 22–33 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Dynamic patterns of N6-methyladenosine profiles of messenger RNA correlated with the cardiomyocyte regenerability during the early heart development in mice. Oxid. Med. Cell. Longev. 2021, 5537804 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. Differential roles of YTHDF1 and YTHDF3 in embryonic stem cell-derived cardiomyocyte differentiation. RNA Biol. 18, 1354–1363 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Qian, B., Wang, P., Zhang, D. & Wu, L. m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov. 7, 157 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gong, R. et al. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol. Res. 174, 105845 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Jiang, F. Q. et al. Mettl3-mediated m(6)A modification of Fgf16 restricts cardiomyocyte proliferation during heart regeneration. Elife 11, e77014 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Y. et al. Loss of m6A demethylase ALKBH5 promotes post-ischemic angiogenesis via post-transcriptional stabilization of WNT5A. Clin. Transl. Med. 11, e402 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hashimoto, H., Olson, E. N. & Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 15, 585–600 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Re, D. P., Amgalan, D., Linkermann, A., Liu, Q. & Kitsis, R. N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 99, 1765–1817 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, P. et al. Amelioration of acute myocardial infarction injury through targeted ferritin nanocages loaded with an ALKBH5 inhibitor. Acta Biomater. 140, 481–491 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, K. et al. Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model. Front. Cell Dev. Biol. 10, 954769 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Q. et al. Exercise mitigates endothelial pyroptosis and atherosclerosis by downregulating NEAT1 through N6-methyladenosine modifications. Arterioscler. Thromb Vasc. Biol. 43, 910–926 (2023).

    PubMed 

    Google Scholar 

  • Xu, Z., Qin, Y., Lv, B., Tian, Z. & Zhang, B. Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A methylation in the heart. Nutrients 14, 251 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X., Li, Y., Li, J., Li, S. & Wang, F. Mechanism of METTL3-mediated m(6)A modification in cardiomyocyte pyroptosis and myocardial ischemia-reperfusion injury. Cardiovasc. Drugs Ther. 37, 435–448 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, R. et al. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell. Mol. Biol. Lett. 27, 55 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, T. et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J. 35, e21162 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Fang, Z. M. et al. Methyltransferase-like 3 suppresses phenotypic switching of vascular smooth muscle cells by activating autophagosome formation. Cell Prolif. 56, e13386 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Shen, L. et al. Nine-month angiographic and two-year clinical follow-up of novel biodegradable-polymer arsenic trioxide-eluting stent versus durable-polymer sirolimus-eluting stent for coronary artery disease. Chin. Med. J. (Engl) 128, 768–773 (2015).

    PubMed 

    Google Scholar 

  • Yu, H. et al. Arsenic trioxide activates yes-associated protein by lysophosphatidic acid metabolism to selectively induce apoptosis of vascular smooth muscle cells. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119211 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Fang, M., Deng, J., Zhou, Q., Hu, Z. & Yang, L. Maslinic acid protects against pressure-overload-induced cardiac hypertrophy by blocking METTL3-mediated m(6)A methylation. Aging (Albany N. Y.) 14, 2548–2557 (2022).

    CAS 

    Google Scholar 

  • Zhang, M. et al. Tanshinone IIA alleviates cardiac hypertrophy through m6A modification of galectin-3. Bioengineered 13, 4260–4270 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo, K. W. & Kleiner, R. E. YTHDF2 recognition of N(1)-methyladenosine (m(1)A)-modified RNA is associated with transcript destabilization. ACS Chem. Biol. 15, 132–139 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Dai, X., Wang, T., Gonzalez, G. & Wang, Y. Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Anal. Chem. 90, 6380–6384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, Q. et al. Cytoplasmic m(1)A reader YTHDF3 inhibits trophoblast invasion by downregulation of m(1)A-methylated IGF1R. Cell Discov. 6, 12 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boo, S. H., Ha, H. & Kim, Y. K. m(1)A and m(6)A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Rep. 40, 111317 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Olsen, M. B. et al. NEIL3-dependent regulation of cardiac fibroblast proliferation prevents myocardial rupture. Cell Rep. 18, 82–92 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Tabish, A. M. et al. Association of intronic DNA methylation and hydroxymethylation alterations in the epigenetic etiology of dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 317, H168–h180 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leopold, J. A. & Loscalzo, J. Emerging role of precision medicine in cardiovascular disease. Circ. Res. 122, 1302–1315 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ylä-Herttuala, S. & Baker, A. H. Cardiovascular gene therapy: past, present, and future. Mol. Ther. 25, 1095–1106 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Saeed, S. et al. Nanoparticle: a promising player in nanomedicine and its theranostic applications for the treatment of cardiovascular diseases. Curr. Probl. Cardiol. 48, 101599 (2023).

    PubMed 

    Google Scholar 



  • Source link

    perbinder
    • Website

    Related Posts

    Blood test warns of hidden heart disease risk

    July 30, 2024

    Loss of teeth may be a sign of serious heart disease

    July 30, 2024

    Researchers warn that removing race from the heart disease risk equation could lead to 16 million people not taking their medications

    July 29, 2024

    Leave A Reply Cancel Reply

    Don't Miss
    Blog

    The percentage of young adults receiving mental health treatment increased by 45% from 2019 to 2022, the largest increase of any age group.

    By perbinderAugust 1, 20240

    A new analysis from KFF finds that the rate of young adults (ages 18-26) receiving…

    Desert Healthcare, Tenet to renew non-compete clause again, vote next week

    August 1, 2024

    Personalized health coaching may improve cognitive function and reduce dementia risk in older adults

    August 1, 2024

    Troy University’s College of Health and Human Services to change name effective August 1

    July 30, 2024
    Our Picks

    Top Medical Tourism Destinations: A Global Overview | Corporate Wellness

    March 29, 2024

    OACEUS brings a new way to wellness

    March 29, 2024

    Spotlight on the best countries for medical tourism in 2024 | Corporate Wellness

    March 29, 2024

    Digging Deeper into Medical Tourism: Origins and Operations | Corporate Wellness

    March 29, 2024
    About Us

    Welcome to Health Medic News, your trusted source for comprehensive information and insights on health-related topics. At Health Medic News, we are dedicated to providing reliable and up-to-date content to help our readers make informed decisions about their health and well-being.

    Our Mission

    At Health Medic News, our mission is to empower individuals with the knowledge and resources they need to live healthier lives. We strive to deliver high-quality content that educates, inspires, and motivates our readers to take control of their health and make positive lifestyle changes

    Our Picks

    “National Fitness Day” is the next Apple Watch challenge to be held in China

    July 30, 2024

    The Pininfarina Sintesi is now my favorite fitness tracker, but there’s one thing I’d change.

    July 30, 2024

    Fitness Corner: Exercise and our own mortality

    July 30, 2024

    Subscribe to Updates

    Subscribe to our newsletter and never miss our latest news

    Subscribe my Newsletter for New Posts & tips Let's stay updated!

    ads
    ads
    ads
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • About
    • Advertise
    • Contact us
    • DMCA Notice
    • Privacy Policy
    • Terms of Use
    © 2025 healthmedicnews. Designed by healthmedicnews.

    Type above and press Enter to search. Press Esc to cancel.