Close Menu
  • Home
  • Diabetes
  • Fitness
  • Heart Disease
  • Mental
  • Physical
  • Wellness
  • Yoga
  • Health

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

The percentage of young adults receiving mental health treatment increased by 45% from 2019 to 2022, the largest increase of any age group.

August 1, 2024

Desert Healthcare, Tenet to renew non-compete clause again, vote next week

August 1, 2024

Personalized health coaching may improve cognitive function and reduce dementia risk in older adults

August 1, 2024
Facebook X (Twitter) Instagram
Health Medic NewsHealth Medic News
  • Home
  • About
  • Advertise
  • Contact us
  • DMCA Notice
  • Privacy Policy
  • Terms of Use
  • Home
  • Diabetes

    Analysis of Tandem Diabetes Care (NASDAQ:TNDM) and SeaStar Medical (NASDAQ:ICU)

    June 19, 2024

    Diabetes costs in the UK could reach £14 billion, study finds

    June 19, 2024

    Oral semaglutide proves effective for type 2 diabetes and weight loss in Dutch study

    June 18, 2024

    Novo Nordisk considers adding 1,000 jobs in Johnston County as sales of weight-loss drug surge

    June 18, 2024

    Cost of devastating complications highlights need for urgent reform of diabetes care in the UK

    June 18, 2024
  • Fitness

    “National Fitness Day” is the next Apple Watch challenge to be held in China

    July 30, 2024

    The Pininfarina Sintesi is now my favorite fitness tracker, but there’s one thing I’d change.

    July 30, 2024

    Fitness Corner: Exercise and our own mortality

    July 30, 2024

    Fitness World Canada Hosts First Spartan DEKA Event in Surrey

    July 30, 2024

    New Franklin Regional boys soccer coach focuses on building trust, fitness

    July 30, 2024
  • Heart Disease

    Blood test warns of hidden heart disease risk

    July 30, 2024

    Loss of teeth may be a sign of serious heart disease

    July 30, 2024

    Researchers warn that removing race from the heart disease risk equation could lead to 16 million people not taking their medications

    July 29, 2024

    Study identifies 18 proteins associated with heart failure and frailty

    July 29, 2024

    Combined prostate cancer treatment increases risk of heart disease

    July 29, 2024
  • Mental

    Addressing adolescent mental health – the importance of early intervention and support

    June 18, 2024

    MAFS’ Dom updates fans on mental health and the future of his podcast

    June 18, 2024

    Connecting to mental health services is as easy as picking up the phone

    June 18, 2024

    Oklahoma Governor Stitt Opposes Mental Health Consent Decree

    June 18, 2024

    Hand to Hold provides mental health support to families in Texas Children’s Hospital’s NICU

    June 17, 2024
  • Physical

    One-of-a-kind Wu-Tang Clan album to be screened at Australian museum

    June 16, 2024

    Interview: Annie Weisman and Closing the Final Chapter of ‘Physical’

    June 16, 2024

    Physiotherapy helps counter the effects of chemotherapy | News, Sports, Jobs

    June 16, 2024

    Barcelona’s new manager not obsessed with physical development

    June 16, 2024

    YouTuber ImAllexx comes under fire for allegations of physical abuse against ex-girlfriend

    June 15, 2024
  • Wellness

    Top Medical Tourism Destinations: A Global Overview | Corporate Wellness

    March 29, 2024

    OACEUS brings a new way to wellness

    March 29, 2024

    Spotlight on the best countries for medical tourism in 2024 | Corporate Wellness

    March 29, 2024

    Digging Deeper into Medical Tourism: Origins and Operations | Corporate Wellness

    March 29, 2024

    Identifying leading medical tourism organizations around the world | Corporate Wellness

    March 29, 2024
  • Yoga

    Body and mind: Epilepsy patients may benefit from yoga

    July 5, 2024

    Lenovo Yoga Pro 9i 16 (2024) review: A+ multi-threading

    July 5, 2024

    The Lenovo Yoga Slim 7x might be the best deal among the new Snapdragon AI PCs

    July 5, 2024

    A Minute with Stavri Ioannou, Yoga Teacher, Mindfulness Educator, and Founder of Kids Alternativities

    July 5, 2024

    7 Places to Work Out Outdoors on the East End This Summer

    July 5, 2024
  • Health

    The percentage of young adults receiving mental health treatment increased by 45% from 2019 to 2022, the largest increase of any age group.

    August 1, 2024

    Desert Healthcare, Tenet to renew non-compete clause again, vote next week

    August 1, 2024

    Personalized health coaching may improve cognitive function and reduce dementia risk in older adults

    August 1, 2024

    Troy University’s College of Health and Human Services to change name effective August 1

    July 30, 2024

    Health Examination

    July 30, 2024
Health Medic NewsHealth Medic News
Home » RNA-binding proteins in cardiovascular biology and disease: the beat goes on
Heart Disease

RNA-binding proteins in cardiovascular biology and disease: the beat goes on

perbinderBy perbinderJanuary 2, 2024No Comments35 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Reddit WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email


  • Morris, K. V. & Mattick, J. S. The rise of regulatory RNA. Nat. Rev. Genet. 15, 423–437 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deogharia, M. & Gurha, P. The ‘guiding’ principles of noncoding RNA function. Wiley Interdiscip. Rev. RNA 13, e1704 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, G., Pratt, G., Yeo, G. W. & Moore, M. J. The clothes make the mRNA: past and present trends in mRNP fashion. Annu. Rev. Biochem. 84, 325–354 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hentze, M. W., Castelló, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 3, 195 (2018).

    Google Scholar 

  • Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wiedner, H. J. & Giudice, J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 28, 465–473 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imig, J., Kanitz, A. & Gerber, A. P. RNA regulons and the RNA-protein interaction network. Biomol. Concepts 3, 403–414 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prashad, S. & Gopal, P. P. RNA-binding proteins in neurological development and disease. RNA Biol. 18, 972–987 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giudice, J. & Cooper, T. A. RNA-binding proteins in heart development. Adv. Exp. Med. Biol. 825, 389–429 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harvey, R. P. Patterning the vertebrate heart. Nat. Rev. Genet. 3, 544–556 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boada, C., Sukhovershin, R., Pettigrew, R. & Cooke, J. P. RNA therapeutics for cardiovascular disease. Curr. Opin. Cardiol. 36, 256–263 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, D. & Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol. 16, 661–674 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Santovito, D. & Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat. Rev. Cardiol. 19, 620–638 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peters, L. J. F. et al. Small things matter: relevance of MicroRNAs in cardiovascular disease. Front. Physiol. 11, 793 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, C. & Wang, Y. mRNA metabolism in cardiac development and disease: life after transcription. Physiol. Rev. 100, 673–694 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gatsiou, A. & Stellos, K. RNA modifications in cardiovascular health and disease. Nat. Rev. Cardiol. 20, 325–346 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gotthardt, M. et al. Cardiac splicing as a diagnostic and therapeutic target. Nat. Rev. Cardiol. 20, 517–530 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerber, A. P. RNA-centric approaches to profile the RNA–protein interaction landscape on selected RNAs. Noncoding RNA 7, 11 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, J. M., Sandow, J. J. & Webb, A. I. The search for RNA-binding proteins: a technical and interdisciplinary challenge. Biochem. Soc. Trans. 49, 393–403 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McHugh, C. A., Russell, P. & Guttman, M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 15, 203 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faoro, C. & Ataide, S. F. Ribonomic approaches to study the RNA‐binding proteome. FEBS Lett. 588, 3649–3664 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hockensmith, J. W., Kubasek, W. L., Vorachek, W. R. & von Hippel, P. H.Laser cross-linking of proteins to nucleic acids. I. Examining physical parameters of protein-nucleic acid complexes. J. Biol. Chem. 268, 15712–15720 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pashev, I. G., Dimitrov, S. I. & Angelov, D. Crosslinking proteins to nucleic acids by ultraviolet laser irradiation. Trends Biochem. Sci. 16, 323–326 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niranjanakumari, S., Lasda, E., Brazas, R. & Garcia-Blanco, M. A. Reversible cross-linking combined with immunoprecipitation to study RNA–protein interactions in vivo. Methods 26, 182–190 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patton, R. D. et al. Chemical crosslinking enhances RNA immunoprecipitation for efficient identification of binding sites of proteins that photo-crosslink poorly with RNA. RNA 26, 1216–1233 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weissinger, R., Heinold, L., Akram, S., Jansen, R.-P. & Hermesh, O. RNA proximity labeling: a new detection tool for RNA–protein interactions. Molecules 26, 2270 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jankowsky, E. & Harris, M. E. Specificity and nonspecificity in RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 16, 533–544 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huppertz, I. et al. Riboregulation of Enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol. Cell 82, 2666–2680.e11 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hentze, M. W. et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238, 1570–1573 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castelló, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Beckmann, B. M. et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat. Commun. 6, 10127 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wassarman, K. M. & Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bou-Nader, C., Gordon, J. M., Henderson, F. E. & Zhang, J. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA 25, 539–556 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buscher, M. et al. Vault RNA1-1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. RNA 28, 742–755 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, Y. et al. The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep. 16, 1456–1469 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riechert, E. et al. Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Rep. 35, 109100 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Claycomb, W. C. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. USA 95, 2979–2984 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frey, N. et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat. Med. 10, 1336–1343 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frank, D. & Frey, N. Cardiac Z-disc signaling network. J. Biol. Chem. 286, 9897–9904 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srivastava, D. Genetic regulation of cardiogenesis and congenital heart disease. Annu. Rev. Pathol. 1, 199–213 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giudice, J. et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat. Commun. 5, 3603 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bohnsack, B. L., Lai, L., Northrop, J. L., Justice, M. J. & Hirschi, K. K. Visceral endoderm function is regulated by quaking and required for vascular development. Genesis 44, 93–104 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Justice, M. J. & Hirschi, K. K. In: Post-Transcriptional Regulation by STAR Proteins: Control of RNA Metabolism in Development and Disease (eds. Volk, T. & Artzt, K.) 82–92 https://doi.org/10.1007/978-1-4419-7005-3_6 (Springer US, 2010).

  • Ding, J.-H. et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Y. et al. SRp38 regulates alternative splicing and is required for Ca2+ handling in the embryonic heart. Dev. Cell 16, 528–538 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallagher, T. L. et al. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Dev. Biol. 359, 251–261 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frese, K. S. et al. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish. J. Cell Sci. 128, 3030–3040 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Misra, C. et al. Aberrant expression of a non-muscle RBFOX2 isoform triggers cardiac conduction defects in myotonic dystrophy. Dev. Cell 52, 748–763.e6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M. et al. Rbm24, a target of p53, is necessary for proper expression of p53 and heart development. Cell Death Differ. 25, 1118–1130 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, J. et al. RBM24 is a major regulator of muscle-specific alternative splicing. Dev. Cell 31, 87–99 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maatz, H. et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J. Clin. Invest. 124, 3419–3430 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raffel, G. D. et al. Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen. Mol. Cell Biol. 29, 333–341 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Machuca-Tzili, L. E. et al. Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. Dis. Model. Mech. 4, 381–392 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, K.-Y. et al. Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Hum. Mol. Genet. 31, 3144–3160 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ladd, A. N., Taffet, G., Hartley, C., Kearney, D. L. & Cooper, T. A. Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol. Cell Biol. 25, 6267–6278 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl Acad. Sci. USA 105, 20333–20338 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dewey, F. E. et al. Gene coexpression network topology of cardiac development, hypertrophy, and failure. Circ. Cardiovasc. Genet. 4, 26–35 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dirkx, E., da Costa Martins, P. A. & De Windt, L. J. Regulation of fetal gene expression in heart failure. Biochim. Biophys. Acta 1832, 2414–2424 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, J. Y. et al. Comparative analysis of mRNA isoform expression in cardiac hypertrophy and development reveals multiple post-transcriptional regulatory modules. PLoS One 6, e22391 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, C. et al. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. J. Clin. Invest. 126, 195–206 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Nakahata, S. & Kawamoto, S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res. 33, 2078–2089 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function. Nat. Commun. 12, 89 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montañés-Agudo, P. et al. The RNA-binding protein QKI governs a muscle-specific alternative splicing program that shapes the contractile function of cardiomyocytes. Cardiovasc. Res. 119, 1161–1174 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fagg, W. S. et al. Definition of germ layer cell lineage alternative splicing programs reveals a critical role for Quaking in specifying cardiac cell fate. Nucleic Acids Res. 50, 5313–5334 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, S. K. et al. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ. Res. 122, 246–254 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, W. et al. RNA binding protein QKI inhibits the ischemia/reperfusion-induced apoptosis in neonatal cardiomyocytes. Cell Physiol. Biochem. 28, 593–602 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verma, S. K. et al. RBFOX2 is required for establishing RNA regulatory networks essential for heart development. Nucleic Acids Res. 50, 2270–2286 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, C. et al. Repression of the central splicing regulator Rbfox2 is functionally linked to pressure overload-induced heart failure. Cell Rep. 10, 1521–1533 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, M. et al. Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome. Nat. Commun. 13, 5877 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verma, S. K. et al. Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci. Rep. 6, 30896 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. Q., Soo, S. Y., Sun, W. & Zweigerdt, R. Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem Cells 27, 2163–2174 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wells, Q. S. et al. Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 317–326 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van den Hoogenhof, M. M. G. et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138, 1330–1342 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Fenix, A. M. et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat. Commun. 12, 6324 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, J. W. et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 26, 1788–1800 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis. FASEB J. 36, e22302 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ladd, A. N., Charlet-B, N. & Cooper, T. A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21, 1285–1296 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masuda, A. et al. CUGBP1 and MBNL1 preferentially bind to 3’ UTRs and facilitate mRNA decay. Sci. Rep. 2, 209 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kress, C., Gautier-Courteille, C., Osborne, H. B., Babinet, C. & Paillard, L. Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice. Mol. Cell Biol. 27, 1146–1157 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giudice, J., Xia, Z., Li, W. & Cooper, T. A. Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1. Sci. Rep. 6, 35550 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuyumcu-Martinez, N. M., Wang, G.-S. & Cooper, T. A. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol. Cell 28, 68–78 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morriss, G. R., Rajapakshe, K., Huang, S., Coarfa, C. & Cooper, T. A. Mechanisms of skeletal muscle wasting in a mouse model for myotonic dystrophy type 1. Hum. Mol. Genet. 27, 2789–2804 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Artero, R. et al. The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2. Dev. Biol. 195, 131–143 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, K.-Y. et al. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol. Med. 5, 1887–1900 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matia-González, A. M., Laing, E. E. & Gerber, A. P. Conserved mRNA-binding proteomes in eukaryotic organisms. Nat. Struct. Mol. Biol. 22, 1027–1033 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bibli, S.-I. et al. Cystathionine γ lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis. Circulation 139, 101–114 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ford, L. P., Watson, J., Keene, J. D. & Wilusz, J. ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system. Genes Dev. 13, 188–201 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dean, J. L. E. et al. The 3′ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol. Cell. Biol. 21, 721–730 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X., Zhai, S. & Yuan, J. Endothelial HuR deletion reduces the expression of proatherogenic molecules and attenuates atherosclerosis. Int. Immunopharmacol. 65, 248–255 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, C. et al. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat. Commun. 11, 3812 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wardman, R. et al. RNA-binding proteins regulate post-transcriptional responses to TGF-β to coordinate function and mesenchymal activation of murine endothelial cells. Arterioscler. Thromb. Vasc. Biol. 43, 1967–1989 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16, 727–744 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Sachse, M. et al. RNA-binding proteins in vascular inflammation and atherosclerosis. Atherosclerosis 374, 55–73 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. et al. Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis. Cell Death Dis. 12, 385 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Veer, E. P. et al. Quaking, an RNA-binding protein, is a critical regulator of vascular smooth muscle cell phenotype. Circ. Res. 113, 1065–1075 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshinaga, M. & Takeuchi, O. Post-transcriptional control of immune responses and its potential application. Clin. Transl. Immunol. 8, e1063 (2019).

    Article 

    Google Scholar 

  • Kang, J.-G. et al. Zinc finger protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation. J. Immunol. 187, 2696–2701 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. et al. mRNA-binding protein ZFP36 is expressed in atherosclerotic lesions and reduces inflammation in aortic endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 1212–1220 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Le Tonqueze, O. et al. Regulation of monocyte induced cell migration by the RNA binding protein, FXR1. Cell Cycle 15, 1874–1882 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Govindappa, P. K. et al. Targeting exosome-associated human antigen R attenuates fibrosis and inflammation in diabetic heart. FASEB J. 34, 2238–2251 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, D.-L. RNA-binding proteins as critical post-transcriptional regulators of cardiac regeneration. Int. J. Mol. Sci. 24, 12004 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathiyalagan, P. et al. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berulava, T. et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail. 22, 54–66 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rigaud, V. O. C. et al. RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation 147, 324–337 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hosen, M. R. et al. Airn regulates Igf2bp2 translation in cardiomyocytes. Circ. Res. 122, 1347–1353 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, J. et al. MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nat. Commun. 6, 10084 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bugg, D. et al. MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell 29, 419–433.e10 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mudd, J. O. & Kass, D. A. Tackling heart failure in the twenty-first century. Nature 451, 919–928 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schultheiss, H.-P. et al. Dilated cardiomyopathy. Nat. Rev. Dis. Prim. 5, 32 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Virani, S. S. et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2019).

    Google Scholar 

  • Li, D. et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin. Transl. Sci. 3, 90–97 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Refaat, M. M. et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 9, 390–396 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Nishiyama, T. et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 14, eade1633 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, S. W. et al. Heart failure-associated changes in RNA splicing of sarcomere genes. Circ. Cardiovasc. Genet. 3, 138–146 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Antonio, M. et al. In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput. Biol. 18, e1009918 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boeckel, J.-N. et al. SLM2 Is a novel cardiac splicing factor involved in heart failure due to dilated cardiomyopathy. Genomics Proteom. Bioinforma. 20, 129–146 (2022).

    Article 
    CAS 

    Google Scholar 

  • Asakura, M. & Kitakaze, M. Global gene expression profiling in the failing myocardium. Circ. J. 73, 1568–1576 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramirez Flores, R. O. et al. Consensus transcriptional landscape of human end-stage heart failure. J. Am. Heart Assoc. 10, e019667 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gruber, A. J. & Zavolan, M. Alternative cleavage and polyadenylation in health and disease. Nat. Rev. Genet. 20, 599–614 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nourse, J., Spada, S. & Danckwardt, S. Emerging roles of RNA 3’-end cleavage and polyadenylation in pathogenesis, diagnosis and therapy of human disorders. Biomolecules 10, 915 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soetanto, R. et al. Role of miRNAs and alternative mRNA 3′-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy. Biochim. Biophys. Acta 1859, 744–756 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Creemers, E. E. et al. Genome-wide polyadenylation maps reveal dynamic mRNA 3’-end formation in the failing human heart. Circ. Res. 118, 433–438 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, J. & Kuyumcu-Martinez, M. N. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc. Res. 119, 1324–1335 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, J. et al. RBFOX2 is critical for maintaining alternative polyadenylation patterns and mitochondrial health in rat myoblasts. Cell Rep. 37, 109910 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohan, N., Kumar, V., Kandala, D. T., Kartha, C. C. & Laishram, R. S. A splicing-independent function of RBM10 controls specific 3’ UTR processing to regulate cardiac hypertrophy. Cell Rep. 24, 3539–3553 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chorghade, S. et al. Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLife 6, e24139 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 135, 851–867 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gladka, M. M. et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138, 166–180 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martino, F. et al. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci. Transl. Med. 14, eabo5715 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thiele, B.-J. et al. RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen I and III synthesis. Circ. Res. 95, 1058–1066 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, K.-T., Cheng, C.-F., King, P.-C., Liu, S.-Y. & Wang, G.-S. CELF1 mediates connexin 43 mRNA degradation in dilated cardiomyopathy. Circ. Res. 121, 1140–1152 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krishnamurthy, P. et al. Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. FASEB J. 24, 2484–2494 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Green, L. C. et al. Human antigen R as a therapeutic target in pathological cardiac hypertrophy. JCI Insight 4, 121541 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hu, X., Wu, P., Liu, B., Lang, Y. & Li, T. RNA-binding protein CELF1 promotes cardiac hypertrophy via interaction with PEBP1 in cardiomyocytes. Cell Tissue Res. 387, 111–121 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dorn, L. E. et al. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139, 533–545 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kmietczyk, V. et al. m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci. Alliance 2, e201800233 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doroudgar, S. et al. Monitoring cell-type-specific gene expression using ribosome profiling in vivo during cardiac hemodynamic stress. Circ. Res. 125, 431–448 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schafer, S. et al. Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat. Commun. 6, 7200 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Petrosino, J. M. et al. The m6A methyltransferase METTL3 regulates muscle maintenance and growth in mice. Nat. Commun. 13, 168 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, Y. et al. Role of m6A RNA methylation in cardiovascular disease (Review). Int. J. Mol. Med. 46, 1958–1972 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schöller, E. et al. Interactions, localization, and phosphorylation of the m6A generating METTL3–METTL14–WTAP complex. RNA 24, 499–512 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batista, P. J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. et al. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 19, 69 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carnevali, L. et al. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in fto deficient mice. PLoS One 9, e95499 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arguello, A. E., DeLiberto, A. N. & Kleiner, R. E. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein–RNA interactome. J. Am. Chem. Soc. 139, 17249–17252 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, H. et al. YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci. 11, 132 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, S. et al. Depletion of m6 A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of Titin. J. Cell Mol. Med. 25, 10879–10891 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Z. et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11, 3000–3016 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kmietczyk, V. et al. Ythdf2 regulates cardiac remodeling through its mRNA target transcripts. J. Mol. Cell Cardiol. 181, 57–66 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garlick, P. J., McNurlan, M. A. & Preedy, V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem. J. 192, 719–723 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gudbjarnason, S., Telerman, M., Chiba, C., Wolf, P. L. & Bing, R. J. Myocardial protein synthesis in cardiac hypertrophy. J. Lab. Clin. Med. 63, 244–253 (1964).

    CAS 
    PubMed 

    Google Scholar 

  • Zühlke, V., Du Mesnil de, R., Gudbjarnason, S. & Bing, R. J. Inhibition of protein synthesis in cardiac hypertrophy and its relation to myocardial failure. Circ. Res. 18, 558–572 (1966).

    Article 
    PubMed 

    Google Scholar 

  • Zimmer, H. G., Steinkopff, G. & Gerlach, E. Changes of protein synthesis in the hypertrophying rat heart. Pflügers Arch. Eur. J. Physiol. 336, 311–325 (1972).

    Article 
    CAS 

    Google Scholar 

  • Zhang, G. et al. Integrated stress response couples mitochondrial protein translation with oxidative stress control. Circulation 144, 1500–1515 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volkers, M. et al. Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc. Natl Acad. Sci. USA 110, 12661–12666 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varma, E. et al. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo. Basic Res. Cardiol. 118, 25 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chothani, S. et al. Widespread translational control of fibrosis in the human heart by RNA-binding proteins. Circulation 140, 937–951 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walter, W. et al. Deciphering the dynamic transcriptional and post-transcriptional networks of macrophages in the healthy heart and after myocardial injury. Cell Rep. 23, 622–636 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwarzl, T. Relative expression of human RNA-binding proteins (RBPs) in the human heart cell atlas. https://doi.org/10.5281/zenodo.8112712 (2023).

  • Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450–1488 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stempien-Otero, A., Kim, D.-H. & Davis, J. Molecular networks underlying myofibroblast fate and fibrosis. J. Mol. Cell Cardiol. 97, 153–161 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, E. T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tombor, L. S. et al. Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat. Commun. 12, 681 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jabs, M. et al. Inhibition of endothelial notch signaling impairs fatty acid transport and leads to metabolic and vascular remodeling of the adult heart. Circulation 137, 2592–2608 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Bruin, R. G. et al. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression. Sci. Rep. 6, 21643 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, M. R. & Costa, G. RNA-binding proteins and translation control in angiogenesis. FEBS J. 289, 7788–7809 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Mil, A. et al. MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. Cardiovasc. Res. 93, 655–665 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilgendorf, I. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circulation Res. 114, 1611–1622 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liepelt, A. et al. Identification of RNA-binding proteins in macrophages by interactome capture. Mol. Cell Proteom. 15, 2699–2714 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kratochvill, F. et al. Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol. Syst. Biol. 7, 560 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C.-Y. A., Xu, N. & Shyu, A.-B. Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol. Cell. Biol. 22, 7268–7278 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krishnamurthy, P. et al. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circulation Res. 104, e9–e18 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steffens, S., Nahrendorf, M. & Madonna, R. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur. Heart J. 43, 1533–1541 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohibi, S., Chen, X. & Zhang, J. Cancer the ’RBP’ eutics–RNA-binding proteins as therapeutic targets for cancer. Pharmacol. Ther. 203, 107390 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perez-Perri, J. I. et al. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat. Commun. 14, 2074 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thum, T. & Condorelli, G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ. Res. 116, 751–762 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sahoo, S., Kariya, T. & Ishikawa, K. Targeted delivery of therapeutic agents to the heart. Nat. Rev. Cardiol. 18, 389–399 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nostrand, E. L. V. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matia-González, A. M., Iadevaia, V. & Gerber, A. P. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118-119, 93–100 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lorenz, D. A. et al. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP. Nat. Methods 20, 65–69 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asencio, C., Chatterjee, A. & Hentze, M. W. Silica-based solid-phase extraction of cross-linked nucleic acid-bound proteins. Life Sci. Alliance 1, e201800088 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, C. & Miles, W. O. Beyond CLIP: advances and opportunities to measure RBP–RNA and RNA–RNA interactions. Nucleic Acids Res. 47, 5490–5501 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell 69, 354–369 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nostrand, E. L. V. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spiniello, M. et al. HyPR-MS for multiplexed discovery of MALAT1, NEAT1, and NORAD lncRNA protein interactomes. J. Proteome Res. 17, 3022–3038 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bos, T. J., Nussbacher, J. K., Aigner, S. & Yeo, G. W. Tethered function assays as tools to elucidate the molecular roles of RNA-binding proteins. Adv. Exp. Med. Biol. 907, 61–88 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bardwell, V. J. & Wickens, M. Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res. 18, 6587–6594 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Gregorio, E., Preiss, T. & Hentze, M. W. Translation driven by an eIF4G core domain in vivo. EMBO J. 18, 4865–4874 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell Proteom. 10, M110.007385 (2011).

    Article 

    Google Scholar 

  • Caudron-Herger, M., Jansen, R. E., Wassmer, E. & Diederichs, S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 49, D425–D436 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hiller, M. et al. The mRNA binding proteome of proliferating and differentiated muscle cells. Genomics Proteom. Bioinforma. 18, 384–396 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. An RNA tagging approach for system-wide RNA-binding proteome profiling and dynamics investigation upon transcription inhibition. Nucleic Acids Res. 49, gkab156 (2021).

    Article 

    Google Scholar 

  • Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403.e19 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Queiroz, R. M. L. et al. Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37, 169–178 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urdaneta, E. C. et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nat. Commun. 10, 990 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castelló, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panhale, A. et al. CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat. Commun. 10, 2682 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bae, J. W., Kim, S., Kim, V. N. & Kim, J.-S. Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nat. Commun. 12, 6026 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bae, J. W., Kwon, S. C., Na, Y., Kim, V. N. & Kim, J.-S. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nat. Struct. Mol. Biol. 27, 678–682 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gray, N. K., Pantopoulos, K., Dandekar, T., Ackrell, B. A. & Hentze, M. W. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc. Natl Acad. Sci. USA 93, 4925–4930 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horos, R. et al. The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell 176, 1054–1067.e12 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hirose, T., Ninomiya, K., Nakagawa, S. & Yamazaki, T. A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24, 288–304 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evguenieva-Hackenberg, E. Riboregulation in bacteria: from general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. Wiley Interdiscip. Rev. RNA 13, e1696 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guiducci, G. et al. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res. 47, 4240–4254 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monti, M. et al. Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine levels across cellular compartments. Comput. Struct. Biotechnol. J. 19, 3034–3041 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    perbinder
    • Website

    Related Posts

    Blood test warns of hidden heart disease risk

    July 30, 2024

    Loss of teeth may be a sign of serious heart disease

    July 30, 2024

    Researchers warn that removing race from the heart disease risk equation could lead to 16 million people not taking their medications

    July 29, 2024

    Leave A Reply Cancel Reply

    Don't Miss
    Blog

    The percentage of young adults receiving mental health treatment increased by 45% from 2019 to 2022, the largest increase of any age group.

    By perbinderAugust 1, 20240

    A new analysis from KFF finds that the rate of young adults (ages 18-26) receiving…

    Desert Healthcare, Tenet to renew non-compete clause again, vote next week

    August 1, 2024

    Personalized health coaching may improve cognitive function and reduce dementia risk in older adults

    August 1, 2024

    Troy University’s College of Health and Human Services to change name effective August 1

    July 30, 2024
    Our Picks

    Top Medical Tourism Destinations: A Global Overview | Corporate Wellness

    March 29, 2024

    OACEUS brings a new way to wellness

    March 29, 2024

    Spotlight on the best countries for medical tourism in 2024 | Corporate Wellness

    March 29, 2024

    Digging Deeper into Medical Tourism: Origins and Operations | Corporate Wellness

    March 29, 2024
    About Us

    Welcome to Health Medic News, your trusted source for comprehensive information and insights on health-related topics. At Health Medic News, we are dedicated to providing reliable and up-to-date content to help our readers make informed decisions about their health and well-being.

    Our Mission

    At Health Medic News, our mission is to empower individuals with the knowledge and resources they need to live healthier lives. We strive to deliver high-quality content that educates, inspires, and motivates our readers to take control of their health and make positive lifestyle changes

    Our Picks

    “National Fitness Day” is the next Apple Watch challenge to be held in China

    July 30, 2024

    The Pininfarina Sintesi is now my favorite fitness tracker, but there’s one thing I’d change.

    July 30, 2024

    Fitness Corner: Exercise and our own mortality

    July 30, 2024

    Subscribe to Updates

    Subscribe to our newsletter and never miss our latest news

    Subscribe my Newsletter for New Posts & tips Let's stay updated!

    ads
    ads
    ads
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • About
    • Advertise
    • Contact us
    • DMCA Notice
    • Privacy Policy
    • Terms of Use
    © 2025 healthmedicnews. Designed by healthmedicnews.

    Type above and press Enter to search. Press Esc to cancel.