Gansevoort, R. T. et al. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 382, 339–352. https://doi.org/10.1016/S0140-6736(13)60595-4 (2013).
Google Scholar
Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 9, S16-23 (1998).
Google Scholar
Cheung, A. K. et al. Cardiac diseases in maintenance hemodialysis patients: Results of the HEMO study. Kidney Int. 65, 2380–2389. https://doi.org/10.1111/j.1523-1755.2004.00657.x (2004).
Google Scholar
Stevens, L. A., Djurdjev, O., Cardew, S., Cameron, E. C. & Levin, A. Calcium, phosphate, and parathyroid hormone levels in combination and as a function of dialysis duration predict mortality: Evidence for the complexity of the association between mineral metabolism and outcomes. J. Am. Soc. Nephrol. 15, 770–779. https://doi.org/10.1097/01.asn.0000113243.24155.2f (2004).
Google Scholar
Yamada, S. & Giachelli, C. M. Vascular calcification in CKD–MBD: Roles for phosphate, FGF23, and Klotho. Bone 100, 87–93. https://doi.org/10.1016/j.bone.2016.11.012 (2017).
Google Scholar
Hruska, K. A., Sugatani, T., Agapova, O. & Fang, Y. The chronic kidney disease–mineral bone disorder (CKD–MBD): Advances in pathophysiology. Bone 100, 80–86. https://doi.org/10.1016/j.bone.2017.01.023 (2017).
Google Scholar
Pavik, I. et al. Secreted Klotho and FGF23 in chronic kidney disease stage 1 to 5: A sequence suggested from a cross-sectional study. Nephrol. Dial. Transplant. 28, 352–359. https://doi.org/10.1093/ndt/gfs460 (2013).
Google Scholar
Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378. https://doi.org/10.1038/ki.2011.47 (2011).
Google Scholar
Wolf, M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 82, 737–747. https://doi.org/10.1038/ki.2012.176 (2012).
Google Scholar
Stubbs, J., Liu, S. & Quarles, L. D. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin. Dial. 20, 302–308. https://doi.org/10.1111/j.1525-139x.2007.00308.x (2007).
Google Scholar
Prié, D., Torres, P. U. & Friedlander, G. Latest findings in phosphate homeostasis. Kidney Int. 75, 882–889. https://doi.org/10.1038/ki.2008.643 (2009).
Google Scholar
Vervloet, M. G. & Larsson, T. E. Fibroblast growth factor-23 and Klotho in chronic kidney disease. Kidney Int. Suppl. 1, 130–135. https://doi.org/10.1038/kisup.2011.29 (2011).
Google Scholar
Prié, D. & Friedlander, G. Reciprocal control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/Klotho system. Clin. J. Am. Soc. Nephrol. 5, 1717–1722. https://doi.org/10.2215/cjn.02680310 (2010).
Google Scholar
Mutluay, R. et al. Serum fetuin-A is associated with the components of MIAC (malnutrition, inflammation, atherosclerosis, calcification) syndrome in different stages of chronic kidney disease. Turk. J. Med. Sci. 49, 327–335. https://doi.org/10.3906/sag-1809-43 (2019).
Google Scholar
Sevinc, C., Yilmaz, G. & Ustundag, S. The relationship between calcification inhibitor levels in chronic kidney disease and the development of atherosclerosis. Ren. Fail. 43, 1349–1358. https://doi.org/10.1080/0886022x.2021.1969248 (2021).
Google Scholar
Yeung, S. M. H., Bakker, S. J. L., Laverman, G. D. & De Borst, M. H. Fibroblast growth factor 23 and adverse clinical outcomes in type 2 diabetes: A bitter-sweet symphony. Curr. Diabetes Rep. 20, 50. https://doi.org/10.1007/s11892-020-01335-7 (2020).
Google Scholar
Wahl, P. et al. Earlier onset and greater severity of disordered mineral metabolism in diabetic patients with chronic kidney disease. Diabetes Care 35, 994–1001. https://doi.org/10.2337/dc11-2235 (2012).
Google Scholar
Esposito, C. et al. Comparing central aortic pressures obtained using a SphygmoCor device to pressures obtained using a pressure catheter. Am. J. Hypertens. 35, 397–406. https://doi.org/10.1093/ajh/hpac010 (2022).
Google Scholar
Nolph, K. D. et al. Cross-sectional assessment of weekly urea and creatinine clearances in patients on continuous ambulatory peritoneal dialysis. ASAIO J. (Am. Soc. Artif. Intern. Organs 1992) 38, M139–M142. https://doi.org/10.1097/00002480-199207000-00004 (1992).
Google Scholar
Jimbo, R. et al. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int. 85, 1103–1111. https://doi.org/10.1038/ki.2013.332 (2014).
Google Scholar
de Borst, M. H., Vervloet, M. G., ter Wee, P. M. & Navis, G. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-Klotho in chronic kidney disease. J. Am. Soc. Nephrol. 22, 1603–1609. https://doi.org/10.1681/asn.2010121251 (2011).
Google Scholar
Silswal, N. et al. FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am. J. Physiol. Endocrinol. Metab. 307, E426–E436. https://doi.org/10.1152/ajpendo.00264.2014 (2014).
Google Scholar
Vergara, N. et al. The direct effect of fibroblast growth factor 23 on vascular smooth muscle cell phenotype and function. Nephrol. Dial. Transplant. 38, 322–343. https://doi.org/10.1093/ndt/gfac220 (2022).
Google Scholar
Durlacher-Betzer, K. et al. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 94, 315–325. https://doi.org/10.1016/j.kint.2018.02.026 (2018).
Google Scholar
Egli-Spichtig, D. et al. Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation. Kidney Int. 96, 890–905. https://doi.org/10.1016/j.kint.2019.04.009 (2019).
Google Scholar
Mirza, M. A. I., Larsson, A., Lind, L. & Larsson, T. E. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205, 385–390. https://doi.org/10.1016/j.atherosclerosis.2009.01.001 (2009).
Google Scholar
Mirza, M. A. I. et al. Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol. Dial. Transplant. 24, 3125–3131. https://doi.org/10.1093/ndt/gfp205 (2009).
Google Scholar
Nasrallah, M. M. et al. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol. Dial. Transplant. 25, 2679–2685. https://doi.org/10.1093/ndt/gfq089 (2010).
Google Scholar
Khan, A. M., Chirinos, J. A., Litt, H., Yang, W. & Rosas, S. E. FGF-23 and the progression of coronary arterial calcification in patients new to dialysis. Clin. J. Am. Soc. Nephrol. CJASN 7, 2017–2022. https://doi.org/10.2215/CJN.02160212 (2012).
Google Scholar
Ozkok, A. et al. FGF-23 associated with the progression of coronary artery calcification in hemodialysis patients. BMC Nephrol. 14, 241. https://doi.org/10.1186/1471-2369-14-241 (2013).
Google Scholar
Asicioglu, E. et al. Fibroblast growth factor-23 levels are associated with vascular calcifications in peritoneal dialysis patients. Nephron Clin. Pract. 124, 89–93. https://doi.org/10.1159/000355859 (2013).
Google Scholar
Zeng, Y. et al. Role of fibroblast growth factor-23 in the pathogenesis of atherosclerosis in peritoneal dialysis patients. Genet. Mol. Res. GMR 14, 719–729. https://doi.org/10.4238/2015.January.30.15 (2015).
Google Scholar
Llauradó, G. et al. FGF-23/vitamin D axis in type 1 diabetes: The potential role of mineral metabolism in arterial stiffness. PLoS One 10, e0140222. https://doi.org/10.1371/journal.pone.0140222 (2015).
Google Scholar
Tuñón, J. et al. Circulating fibroblast growth factor-23 plasma levels predict adverse cardiovascular outcomes in patients with diabetes mellitus with coronary artery disease. Diabetes/Metab. Res. Rev. 32, 685–693. https://doi.org/10.1002/dmrr.2787 (2016).
Google Scholar
Fitzpatrick, J. et al. Calcification biomarkers, subclinical vascular disease, and mortality among multiethnic dialysis patients. Kidney Int. Rep. 5, 1729–1737. https://doi.org/10.1016/j.ekir.2020.07.033 (2020).
Google Scholar
Isakova, T. et al. Longitudinal FGF23 trajectories and mortality in patients with CKD. J. Am. Soc. Nephrol. 29, 579–590. https://doi.org/10.1681/asn.2017070772 (2018).
Google Scholar
Komaba, H. et al. Fibroblast growth factor 23 and mortality among prevalent hemodialysis patients in the japan dialysis outcomes and practice patterns study. Kidney Int. Rep. 5, 1956–1964. https://doi.org/10.1016/j.ekir.2020.08.013 (2020).
Google Scholar
Chonchol, M., Greene, T., Zhang, Y., Hoofnagle, A. N. & Cheung, A. K. Low vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO study. J. Am. Soc. Nephrol. 27, 227–237. https://doi.org/10.1681/asn.2014101009 (2016).
Google Scholar
Isakova, T. et al. Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin. J. Am. Soc. Nephrol. CJASN 6, 2688–2695. https://doi.org/10.2215/CJN.04290511 (2011).
Google Scholar
Yamada, S. et al. Relationship between residual renal function and serum fibroblast growth factor 23 in patients on peritoneal dialysis. Ther. Apheresis Dial. Off. Peer Rev. J. Int. Soc. Apheresis Jpn. Soc. Apheresis Jpn. Soc. Dial. Ther. 18, 383–390. https://doi.org/10.1111/1744-9987.12170 (2014).
Google Scholar
Bär, L. et al. Insulin suppresses the production of fibroblast growth factor 23 (FGF23). Proc. Natl. Acad. Sci. U. S. A. 115, 5804–5809. https://doi.org/10.1073/pnas.1800160115 (2018).
Google Scholar
Hermans, M. M. et al. Study on the relationship of serum fetuin-A concentration with aortic stiffness in patients on dialysis. Nephrol. Dial. Transplant. 21, 1293–1299. https://doi.org/10.1093/ndt/gfk045 (2006).
Google Scholar
Stompór, T. et al. Pulse wave velocity and proteins regulating vascular calcification and bone mineralization in patients treated with peritoneal dialysis. Nephrol. Dial. Transplant. 21, 3605–3606. https://doi.org/10.1093/ndt/gfl409 (2006).
Google Scholar
Schafer, C. et al. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112, 357–366. https://doi.org/10.1172/jci17202 (2003).
Google Scholar
Ketteler, M. et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: A cross-sectional study. Lancet 361, 827–833. https://doi.org/10.1016/s0140-6736(03)12710-9 (2003).
Google Scholar
Wang, A. Y. et al. Associations of serum fetuin-A with malnutrition, inflammation, atherosclerosis and valvular calcification syndrome and outcome in peritoneal dialysis patients. Nephrol. Dial. Transplant. 20, 1676–1685. https://doi.org/10.1093/ndt/gfh891 (2005).
Google Scholar
Alkalbani, M., Prabhu, G., Lagbo, J. & Qayyum, R. Serum Klotho and pulse pressure; Insight from NHANES. Int. J. Cardiol. 355, 54–58. https://doi.org/10.1016/j.ijcard.2022.02.021 (2022).
Google Scholar
Liang, W.-Y. et al. No significant association of serum klotho concentration with blood pressure and pulse wave velocity in a Chinese population. Sci. Rep. 11, 1–8 (2021).
Kim, H. J. et al. The association between soluble klotho and cardiovascular parameters in chronic kidney disease: Results from the KNOW-CKD study. BMC Nephrol. 19, 51. https://doi.org/10.1186/s12882-018-0851-3 (2018).
Google Scholar